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Introduction

Classical and quantum mechanical systems are mathematically described in a different way. For finitely
many degrees of freedom, differential geometry, notably symplectic and Poisson geometry, provides
the language in which classical mechanical systems are described, whereas functional analysis and in
particular the theory of Hilbert spaces is the appropriate language in which quantum mechanics is
formulated. The mathematics is well understood in both situations, and one even has a powerful tool
for the passage from the classical to the quantum mechanical description of a corresponding system,
namely quantization theory.

In their book (Mathematical Concepts of Quantum Mechanics, Gustafson & Sigal, 2011), the authors
depict the situation by the following diagram, where d Ñ 8 denotes the passage from finitely to
infinitely many degrees of freedom.

CM QM

CFT QFT

quantization

qÑ8 qÑ8

quantization

The key ingrediants for the description of a physical system are the mathematical objects which
encode its state space, the observable space, and its dynamics. These objects should depend in some
functorial on the system and usually come from quite distinct categories, depending on whether the
system is classical or quantum, has finitely or infinitely many degrees of freedom.
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Part I.

Classical Field Theory
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I.1. Variational calculus

1.1. The variational bicomplex

The Cartan distribution

1.1.1 We start with a smooth fiber bundle π : E ÑM over a d-dimensional manifoldM . The typical
fiber is denoted F and assumed to have dimension n. Consider the infinite jet bundle π8 : J8E ÑM
and recall that pJ8E,C8q is the pro-manifold defined as the limit of the (cofiltered) diagram

`

E,C8
˘ π0,1
ÐÝ

`

J1E,C8
˘ π1,2
ÐÝ . . .

πk´1,k
ÐÝ

`

JkE,C8
˘ πk,k`1
ÐÝ . . . . (1.1.1)

in the category of commutative locally R-ringed spaces. This means that in the category of topological
spaces J8E coincides with lim

kPN
JkE and that the structure sheaf C8J8E is given by colim

kPN
π˚k,8C

8
JkE

,

where the πk,8 : J8E Ñ JkE are the natural maps from the (topological) limit to the objects of the
diagram. The projection π8 : J8E ÑM is uniquely determined by the property that π8 “ πk ˝πk,8
for all k P N, where πk is the canonical projections of the finite jet bundles JkE. Note that the family
of canonical projections πk : JkE ÑM is compatible with the diagram Equation (1.1.1) in the sense
that πl “ πk ˝ πk,l for all k ď l. Next recall that C8loc,J8E , or just C

8
loc when no confusion can arise,

stands for the presheaf of local functions on the infinite jet bundle. Its space of sections over some
open U Ă J8E consists of all continuous maps f : U Ñ R for which there exists a k P N, an open
Uk Ă JkE and a smooth function fk : Uk Ñ R such that U Ă π´1

k,8pUkq and f “ fk ˝ πk,8|U .

The diagram Equation (1.1.1) of jet bundles of finite order induces another filtered diagram by taking
tangent bundles and tangent maps:

`

TE,C8
˘ Tπ0,1
ÐÝ

`

TJ1E,C8
˘ Tπ1,2
ÐÝ . . .

Tπk´1,k
ÐÝ

`

TJkE,C8
˘ Tπk,k`1
ÐÝ . . . . (1.1.2)

The resulting limit in the category of commutative locally R-ringed spaces is called the tangent bundle
of the pro-manifold pJ8E,C8q and is denoted pTJ8E,C8q. One writes Tπk,8 : TJ8E Ñ TJkE for
the natural maps of the limit and obtains the tangent map Tπ8 : TJ8E Ñ TM uniquely determined
by the property that Tπ8 “ Tπk ˝ Tπk,8 for all k P N.

As the last prerequisite we need the concept of Roman multi-indices and their combinatorial properties
from Section A.8.1. As there we denote by I

‚
the set of ordered Roman multi-indices in an ordered

index set I. In our situation, the index set is I “ t1, . . . , du which entails that I
‚
consists of a zero

element O and all finite sequences of integers of the form

I “ pi1, . . . , ikq , where k P Ną0 and 1 ď i1 ď i2 ď . . . ď ik ď d .

The number k is called the length of the ordered Roman multi-index I and is denoted by |I|. The
length of the zero element O is defined to be 0.
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I.1. Variational calculus 1.1. The variational bicomplex

Now we have all the tools to define the main object of this section, the Cartan distribution.

1.1.2 Let p be a point of the base manifold M . Choose an open contractible neighborhood U ĂM
of p over which there exists a coordinate system x : U Ñ Rd. Denote by EU the space of smooth
sections of the bundle π : E ÑM over U and by Iε for ε ą 0 the open interval ´ε, ε around 0. By
Borel’s theorem, the jet map j8q : EU Ñ J8q E is surjective for every q P U . Call a smooth path

γ “ pσ, µq : Iε Ñ EU ˆ U, t ÞÑ pσt, µtq

with µ0 “ p vertical over p if µ is a constant path and horizontal over p if σ is a constant path.
Smoothness of σ hereby means that σ_ : IεˆU Ñ E, pt, qq ÞÑ σtpqq is smooth. The composition

j8 γ : Iε Ñ J8E, t ÞÑ j8µtpσtq

then is a smooth path in the jet bundle and the derivative

pj8 γq1 p0q “
d

dt
pj8 γq ptq

ˇ

ˇ

ˇ

t“0
“

d

dt

`

j8µtpσtq
˘

ˇ

ˇ

ˇ

t“0

an element of the tangent space TθJ8E over the footpoint θ “ j8p pσ0q. If γ is vertical, the path
π8 j8 γ is constant with value p which implies that the tangent vector pj8 γq1 p0q has to be an
element of the vertical bundle Vπ8 “ kerTπ8 Ă TJ8E. Let us show that every vertical tangent
vector with footpoint θ can be obtained that way. So assume that v P Vθπ8 is represented by a
smooth path % : ´ε, ε Ñ J8E such that π8p%ptqq “ p for all t. After possibly shrinking U and ε
one can assume that there exists a fibered chart px, uq : rU Ñ Rd ˆRn over some open rU Ă E such
that πprUq “ U , px, uq is trivialising in the sense that its image coincides with the cartesian product
of xpUq and an open V Ă Rn and such that π0,8p%ptqq P rU for all t. One obtains a family of smooth
real valued functions ua %, ua

i %, . . . , ua
I %, . . ., where the index a runs through t1, . . . , nu, the

index i through I “ t1, . . . , du, and I through all ordered Roman multi-indices in I of order ě 2.
By Borel’s Theorem with parameters (Kriegl & Michor, 1997, 15.4), there exists a smooth function
s “ ps1, . . . , snq : Iε ˆ U Ñ V such that

B|I|sa

BxI
pt, pq “ ua

I %ptq for all t P Iε, a P t1, . . . , nu and I P I
‚
.

Let σ : Iε Ñ EU be the smooth path of sections t ÞÑ spt,´q, µ : Iε Ñ M the constant path at p
and let γ “ pσ, µq. Then γ is vertical and, by construction,

pj8 γq1 p0q “ %1p0q “ v .

This shows the claim.

Next assume to be given a jet θ P J8p E. Define the horizontal space at that jet by

CθJ8E “
 

pj8 γq1 p0q P TθJ8E
ˇ

ˇ γ “ pσ, µq is horizontal over p and j8σ0 “ θ
(

.

One calls CJ8E “
Ť

θPJ8E CθJ8E the Cartan distribution on the jet bundle J8E. In the following
we will study its properties and will show that it is an involutive distribution on the jet bundle which
is complementary to the vertical bundle.
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I.1. Variational calculus 1.1. The variational bicomplex

1.1.3 Lemma Let θ P J8p E be a jet and choose a trivialising fibered chart px, uq : rU Ñ Rd ˆ Rn
around an open neighborhood of e “ π1,8pθq. Let µ : Iε Ñ U be a smooth path with µ0 “ p,
σ : Iε Ñ EU a smooth path of sections and finally s : U Ñ E a smooth section such that that the
images of all σt and s are in rU and such that j8p pσ0q “ j8p psq “ θ. Denote by µi the composition
xi µ and by σa and sa the compositions ua σ and ua s, respectively. Then the tangent vector of
the vertical path pσ, pq is given by

`

j8p σt
˘1
p0q “

n
ÿ

a“1

ÿ

I

B|I|pσaq1p0q

BxI
ppq

B

Bua
I

(1.1.3)

and the tangent vector of the horizontal path ps, µq by

`

j8µts
˘1
p0q “

d
ÿ

i“1

pµiq1p0q

˜

B

Bxi
`

n
ÿ

a“1

ÿ

I

B|I|`1sa

BxiBxI
ppq

B

Bua
I

¸

. (1.1.4)

In these formulas, I runs through all ordered Roman multi-indices in the index set I “ t1, . . . , du.

Proof. Let γ “ pσ, µq. Then in the selected fibered chart

xi j8 γ “ µi and pua
I j8 γq ptq “

B|I|σa
t

Bxi
pµtq ,

from which the claim follows by specialization to µt “ p respectively σt “ s and the chain rule.

1.1.4 Lemma Let θ P J8p E be a jet and s1, s2 : U Ñ E two smooth sections such that

θ “ j8p ps1q “ j8p ps2q .

Then for every smooth path µ : Iε ÑM with µ0 “ p the equality
`

j8µts1

˘1
p0q “

`

j8µts2

˘1
p0q

holds true, where 1 denotes the derivative with respect to the parameter t. Hence,

CθJ8E “
 `

j8µts1

˘1
p0q P TθJ8E

ˇ

ˇ µ P C8 pIε,Mq & µ0 “ p
(

“
 `

j8µts2

˘1
p0q P TθJ8E

ˇ

ˇ µ P C8 pIε,Mq & µ0 “ p
(

.
(1.1.5)

1.1.5 Remark The lemma implies in particular that the horizontal space CθJ8E does not depend
on the choice of a section representing θ.

Proof. After possibly shrinking U and ε choose a trivialising fibered chart px, uq : rU Ñ Rd ˆ Rn
around an open neighborhood of s1ppq “ s2ppq as above. Moreover, we can assume after possible
shrinking U and ε again that both s1pUq and s2pUq are contained in rU . Then compute

`

j8µts1

˘1
p0q “

d
ÿ

i“1

pµiq1p0q

˜

B

Bxi
`

n
ÿ

a“1

ÿ

I

B|I|`1sa
1

BxiBxI
ppq

B

Bua
I

¸

“

d
ÿ

i“1

pµiq1p0q

˜

B

Bxi
`

n
ÿ

a“1

ÿ

I

B|I|`1sa
2

BxiBxI
ppq

B

Bua
I

¸

“
`

j8µts2

˘1
p0q ,

where µi “ xi µ, sa
j “ ua sj for j “ 1, 2, and where I runs through the Roman multi-indices in

the index set I. This proves the claim.
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I.1. Variational calculus 1.2. Euler-Lagrange equations

1.1.6 Lemma For every section s P EU the map

TpM Ñ TpM, µ1p0q ÞÑ
`

π8 j8µtpsq
˘1
p0q

is the identity map, where tangent vectors at p are represented as derivatives at the base point 0 of
smooth paths µ : Iε ÑM based at p that is which fulfill µ0 “ p.

Proof. This is trivial, since π8 j8µtpsq “ µt for all t P Iε.

Despite the lemma being trivial, some of its consequences are not.

1.1.7 Proposition For every smooth fiber bundle π : E Ñ M the Cartan distribution is a smooth
involutive vector subbundle of the tangent bundle on J8E. The Cartan distribution has fiber dimension
d “ dimM . In a fibered chart px, uq : rU Ñ Rd ˆ Rn, a local frame for the Cartan distribution is
given by the family of vector fields

Di “
B

Bxi
`

n
ÿ

a“1

ÿ

I

ua
Ii

B

Bua
I

, i “ 1, . . . , d ,

where the right summation is taken over all Roman multi-indices I in the index set I “ t1, . . . , du.

Proof. By Lemma 1.1.6 it is clear that dim CθJ8E “ d for every θ P J8E.

1.2. Euler-Lagrange equations

Regular domains

Before we come to the Euler-Lagrange equations of a variational problem we need to explain the kind
of domains over which we want to consider variational problems. To this end recall first that by a
triangulation of a topological space X one understands a homeomorphism of the form

κ : |K| Ñ X ,

where |K| is the underlying topological space of a (geometric) simplicial complex in some euclidean
space Rn. In the case where the topologial space X is a closed subset of a compact manifold-with-
boundary ĎM we call the triangulation piecewise smooth if for every simplex σ P K the restriction
κ|σ : σ Ñ κpσq is a diffeomorphism onto its image which means that the following two conditions
hold.

(i) For every smooth f defined on an open neighborhood of κpσq, the pullback
`

κ|σ
˘˚
f can be

extended to a smooth function on the euclidean space Rn in which the simplicial complex K lies.

(ii) For every smooth g defined on an open neighborhood of the simplex σ Ă Rn, the pullback
`

κ|´1
σ

˘˚
g has a smooth extension to ĎM .

6



I.1. Variational calculus 1.2. Euler-Lagrange equations

After these preparatory remarks let M be a smooth manifold of finite type that is let M be diffeo-
morphic to the interior of a compact manifold-with-boundary ĎM . Denote by d the dimension of M
and assume that d ą 0. By a regular domain in M we now understand a non-empty open connected
subset Ω ĂM such that its closure sΩ in ĎM possesses a piecewise smooth triangulation κ : |K| Ñ sΩ,
where |K| is the underlying topological space of a finite (geometric) simplicial complex. It is further
assumed that κ´1pBΩq and κ´1pBΩX BMq are simplicial subcomplex of K of dimension ă d where
BΩ denotes the topological boundary of Ω in ĎM and BM is the boundary ĎMzM .

Regular domains will comprise the domains over which we consider variational problems. In most
applications, Ω will be the interior of a submanifold-with-corners of ĎM ; see MR [1] and Joyce (2012)
for details on manifolds-with-corners and their submanifolds. In this section we will therefore consider
mostly this particular case and only briefly indicate how the argument goes in the more general
situation. For ease of exposition we will call a regular domain Ω Ă M such that sΩ Ă M is a
submanifold-with-corners a strongly regular domain. If additionally the boundary BΩ is even smooth,
then we call Ω a strongly regular domain with smooth boundary.

In most cases we choose M to coincide with the euclidean space Rd. Note that Rd is a manifold of
finite type and that it is diffeomorphic to the interior of the d-dimensional closed unit ball Bd around
the origin. A diffeomorphism between the euclidean space Rd and the interior Bd of Bd is given by
the smooth map ϕ : Rd Ñ Bd, x ÞÑ 1?

1`}x}2
x. It has inverse ψ : Bd Ñ Rd, y ÞÑ 1?

1´}y}2
y as the

following two equalities show.

ϕpψpyqq “
1

b

1` }y}2

1´}y}2

1
a

1´ }y}2
y “ y

ψpϕpxqq “
1

b

1´ }x}2

1`}x}2

1
a

1` }x}2
x “ x

In the remainder of this section we will identify Rd with its image in the d-dimensional closed ball
Bd. Under this identification one can understand Bd as a certain compactification of euclidean space
Rd. It is termed the radial compactification of Rd and sometimes denoted by Bd8. Last, we call the
boundary BBd8 “ Bd8zϕpRdq the pd´ 1q-sphere at infinity and denote it by the symbol Sd´1

8 .

The local case

1.2.1 Assume that Ω Ă Rd is an open subset which can be identified with the interior of a compact
submanifold-with-boundary sΩ Ă Bd8 under the above identification ϕ : Rd Ñ Bd8. In particular this
means that the boundary BΩ is a closed submanifold of Bd8. Later we will relax the assumptions
and allow Ω to be a regular domain in Rd. We interpret the preimages ϕ´1psΩq and ϕ´1pBΩq as
intersections sΩX Rd and BΩX Rd, respectively. Note that both of these spaces are submanifolds of
Rd, the first one possibly with boundary. Let px1, . . . , xdq : Ω Ñ Rd be the canonical coordinates
of Ω. Observe that sΩ X Rd and Ω are oriented by the restriction of the canonical volume form
dx1 ^ . . .^ dxd to sΩX Rd. We denote that restriction by ω.

Further we assume to be given a trivial smooth fiber bundle π : E “ sΩ ˆ F Ñ sΩ with typical fiber
F being a connected open subset of some euclidean space Rn. The canonical fiber coordinates will

7



I.1. Variational calculus 1.2. Euler-Lagrange equations

be denoted by pu1, . . . , unq : F Ñ Rn. The canonical charts of the interior of the base and the fiber
give rise to a fibered chart px, uq : E “ Ω ˆ F Ñ Rd ˆ Rn. The fiber bundle π : E Ñ sΩ and its
associated jet bundles give rise to various kinds of section spaces which we need in the following and
which we briefly now recall. Assume to be given some order m P NYt8u and a locally closed subset
X Ă sΩ. Let Ẽ Ñ sΩ be one of the bundles E Ñ sΩ or JkE Ñ sΩ, where k P NY t8u. By ΓmpX; Ẽq
we then denote the space of m-times continuously differentiable sections of Ẽ over X that is of all
continuous sections s : X Ñ Ẽ which have an m-times continuously differentiable extension to an
open neighborhood of X in sΩ. The subspace of all s P ΓmpX; Ẽq with support compactly contained
in X XRd will be denoted by Γm0 pX; Ẽq. We often write ΓpX; Ẽq instead of Γ0pX; Ẽq for the space
of continuous sections. The space EmpX;Eq of Whitney fields of order m over X with values in E
is defined by

EmpX;Eq “
 

S P ΓpX; JmEq
ˇ

ˇ Ds P ΓmpsΩ;Eq : jms|X “ S
(

.

Analogously as for Γm we denote by Em0 pX;Eq the space of all Whitney fields S P EmpX;Eq which
have support compactly contained in X X Rd. Note that each of the section spaces ΓmpX; Ẽq and
EmpX;Eq can be written as the quotient of some function space CmpU,F ˆRlq, where l P NYt8u
and U Ă sΩ is open. Therefore, each of those sections spaces inherits from the corresponding
CmpU,F ˆ Rlq the structure of a Fréchet space. As a consequence of this observation, the section
spaces Γm0 pX; Ẽq and Em0 pX;Eq become LF-spaces in a natural way.

The next ingredient we need is a lagrangian function that is a function L P C8loc
`

J8π
˘

. Since L is a
local function on the jet bundle, it can be regarded as an element of C8

`

Jkπ
˘

for some natural k.
Let ordpLq be the smallest of such numbers and call it the order of the langragian function. The
canonical volume form ω together with the lagrangian L give rise to the lagrangian density L “ Lω
on the jet bundle J8π. todo: add normalized lagrangians
Before we can write down the action functional induced by the lagrangian density L we need to fix some
boundary conditions. For now, we will restrict to Cauchy boundary conditions with compact support of
some given order m P NYt8u. These are encoded by Whitney fields F P EmpBΩ;Eq Ă ΓpBΩ; JmEq
with support being compact and contained in BΩ X Rd. More precisely, define the space of Cauchy
boundary data of order m over the regular domain Ω by

Bm
CauchypBΩ;Eq :“ EmpBΩ;Eq X Γ80 pBΩ; JmEq “

“
 

B P Γ8pBΩ; JmEq
ˇ

ˇ Db P Γ8psΩ;Eq : jmb|BΩ “ B & supp b Ť sΩX Rd
(

.

Given an element B P Bm
CauchypBΩ;Eq, we single out the space XB of allowable sections of E:

XB “
 

s P Γ80 p
sΩ;Eq

ˇ

ˇ jms|BΩ “ B
(

.

In other words, XB consists of all smooth sections s : sΩ Ñ E which fulfill the support condition
supp s Ť sΩXRd and the Cauchy boundary condition jms|BΩ “ B. Observe that by construction XB

is an affine space over the vector space

Vm “
 

v P Γ80 p
sΩ;Eq

ˇ

ˇ jmv|BΩ “ 0
(

.

That space carries a natural locally convex topology given by the locally convex colimit topology of
the strict inductive system of Fréchet spaces

Vm
N “

 

v P Vm
ˇ

ˇ supp v Ă sΩX sBN p0,Rdq
(

, N P N .

8



I.1. Variational calculus 1.2. Euler-Lagrange equations

The affine space XB inherits the locally convex topology from Vm and thus becomes a manifold
globally modeled on Vm. The tangent bundle of XB then is canonically isomorphic to the product
manifold XB ˆVm.

Now we can write down the action functional associated to the lagrangian density L:

S : XB Ñ R, s ÞÑ
ż

sΩXRd

`

j8s
˘˚
L “

ż

sΩXRd

`

L ˝ j8s
˘

¨ ω . (1.2.1)

Note that even though the domain of integration might be unbounded, the integral is well-defined for
every s P XB since L˝ j8s has compact support contained in sΩXRd whenever s has that property.

1.2.2 Proposition Assume that Ω Ă Rd is an open subset such that its closure sΩ in Bd8 is a
submanifold-with-boundary. Denote by ω the canonical volume element on Ω induced from Rd.
Assume further that π : E “ sΩ ˆ F Ñ sΩ a trivial fiber bundle with typical fiber F being an open
and connected subset of some Rn. Let L P C8loc

`

J8π
˘

be a lagrangian, and B an element of the
space Bm

CauchypΩ;Eq of Cauchy boundary data of order m ě ordpLq ´ 1. Then the action functional
S : XB Ñ R associated to the lagrangian density L “ Lω is continuous. Moreover, S is Gateaux
differentiable. The corresponding functional derivative δ S : TXB “ XB ˆ Vm Ñ R is linear in Vm,
continuous and given by

xδ Spsq, vy “
n
ÿ

a“1

ż

sΩXRd
va ¨ j8psq˚

¨

˝

BL

Bua
`

ÿ

IPI
‚
, |I|ą0

p´1q|I|
B|I|

BxI

ˆ

BL

Bua
I

˙

˛

‚¨ ω , (1.2.2)

where ps, vq P XB ˆVm and where va is the composition ua ˝ v.

Proof. We first show that the functional S is sequentially continuous with respect to the locally convex
topology on XB which means that for each s P XB and each sequence pskqkPN in XB converging to
s the sequence

`

Spskq
˘

kPN converges to Spsq. Since Vm is an LF space that is the locally convex
colimit of a countable strict inductive system of Fréchet spaces, there exists a positive natural number
N such that sk ´ S P Vm

N for all k P N. Since the support of s is compactly contained in sΩ X Rd,
we can assume after possibly increasing N that supp s Ă BN p0,Rdq. Hence the supports all sk are
contained in sΩX BN p0,Rdq, and for every α P Nd the sequence

´

B|α|sk
Bxα

¯

kPN
converges uniformly on

sΩX BN p0,Rdq to B|α|s
Bxα . Since the lagrangian function L has finite order, the compositions L ˝ j8sk

and L ˝ j8s also have compact support contained in sΩXBN p0,Rdq, and the sequence pL ˝ j8skqkPN
converges uniformly on sΩXBN p0,Rdq to L˝ j8s. Hence the sequence of integrals

ş

sΩXRd
`

L˝ j8sk
˘

ω
converges to Spsq “

ş

sΩXRd
`

L ˝ j8s
˘

ω, and the action functional is sequentially continuous.

The proof of sequential continuity can not be extended to also show continuity of the action just by
replacing sequences with nets. The reason is that a net in an LF space, e.g. one labeled by the first
uncountable ordinal, might not have any subsequences at all. Hence, unlike a converging sequences, a
net in an LF space need not eventually be contained in one of the Fréchet spaces of the strict inductive
system defining the LF structure. This observation makes the main ingredient in the above argument
fail for the case of converging nets. One therefore needs another approach to prove continuity of S.
We will use the observation from MR [2] that the locally convex topology of the LF space Vm is
defined by the collection of all seminorms

pN,θ : Vm Ñ Rě0, v ÞÑ sup
1ďaďn

sup
IPI
‚
, |I|ďN

›

›

›

›

›

θI
B|I|va

BxI

›

›

›

›

›

sΩ

.
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I.1. Variational calculus 1.2. Euler-Lagrange equations

Let s P XB and choose N P N large enough so that supp s Ť sΩX BN p0,Rdq.

Next we prove Gateaux differentiability. To this end let s‚ “ pstqtPIε be a smooth path in XB defined
on some open interval Iε of the form ´ε, ε with ε ą 0 and which fulfills s0 “ s. Note that the
tangent vector 9s0 is an element of the space Vm and that every v P V can be obtained as the tangent
vector of a smooth path in XB, e.g. of the path RÑ XB, t ÞÑ s` tv. Denote by o the order of the
langrangian and by I the index set t1, . . . , du. Recall Equation 1.1.3 for the vertical derivative of the
jet map:

T j8p 9s0q “
d

dt
j8st

ˇ

ˇ

ˇ

ˇ

t“0

“

n
ÿ

a“1

ÿ

IPI
‚

B|I| 9sa
0

BxI

B

Bua
I

. (1.2.3)

In this formula, I
‚
denotes the set of ordered Roman multi-indices in the set I “ t1, . . . , du that is

I
‚
consists of a zero element O and all finite sequences of integers of the form

I “ pi1, . . . , ikq , where k P Ną0 and 1 ď i1 ď i2 ď . . . ď ik ď d .

The number k is called the length of the ordered Roman multi-index I. The length of the zero element
O is defined to be 0. See Section A.8.1 for details on Roman multi-indices and their combinatorial
properties. After these preparations we now compute:

d

dt
Spstq

ˇ

ˇ

ˇ

ˇ

t“0

“

ż

sΩXRd

d

dt
L ˝ j8pstq

ˇ

ˇ

ˇ

ˇ

t“0

ω “
n
ÿ

a“1

ż

sΩXRd

ÿ

IPI
‚

B|I| 9sa
0

BxI

ˆ

BL

Bua
I

˝ j8ps0q

˙

ω “

“

n
ÿ

a“1

ż

sΩXRd

¨

˝ 9sa
0

ˆ

BL

Bua
˝ j8ps0q

˙

`
ÿ

IPI
‚
, |I|ą0

B|I| 9sa
0

BxI

ˆ

BL

Bua
I

˝ j8ps0q

˙

˛

‚ω .

1.2.3 We now want to find the extremal points of the functional S, if such exist. To this end we first
derive a necessary condition for s0 P XB to be an extremal point of S.
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I.2. Semi-riemannian geometry

2.1. Causal structures

2.1.1 In this section, we let pM, gq denote a connected lorentzian manifold of dimension D “ d` 1,
d P Ną0. In particular this means that the signature of the semi-riemannian structure g is p1, dq or,
in different notation, p`,´, . . . ,´q. At each point p P M the tangent space TpM then canonically
carries the structure of a D-dimensional lorentzian vector space. Denote by qL : TM Ñ R the Lorentz
quadratic form v ÞÑ gpv, vq. With these notational agreements in mind we now make the following
definition.

2.1.2 Definition A tangent vector v P TM is called

(i) lightlike or null if v ‰ 0 and qLpvq “ 0,

(ii) timelike if qLpvq ą 0,

(iii) spacelike if v “ 0 or qLpvq ă 0, and

(iv) causal (or non-spacelike) if v ‰ 0 and qLpvq ě 0.

A piecewise differentiable curve γ : ra, bs Ñ M , ´8 ď a ă b ď 8, is called lightlike, timelike, or
spacelike if each of its tangent vectors is so, respectively.

2.1.3 Proposition

2.1.4

From now on, we assume that M is temporally orientable that is that

11
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Quantum Mechanics
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II.1. The postulates of quantum mechanics

1.1. The geometry of projective Hilbert spaces

1.1.1 Let H be a Hilbert space over the field K “ R or “ C. The associated projective Hilbert space
PH then is defined as the space of all rays in H that is as the space

PH “
 

l P PpHq
ˇ

ˇ l is a 1-dimensional K-linear subspace of H
(

.

It carries a natural topology which we now describe. Consider Hzt0u with its subspace topology.
Then one has a natural map

π : Hzt0u Ñ PH, v ÞÑ Kv

which obviously is surjective. One endows PH with the final topology with respect to π. Next let us
introduce an equivalence relation „ on Hzt0u by defining v „ w if there exists a λ P Kˆ “ Kzt0u
such that v “ λw. Obviously „ is reflexive, since 1 P Kˆ, symmetric, since with λ P Kˆ the inverse
λ´1 is in Kˆ as well, and transitive, since the product of two elements of Kˆ is in Kˆ. Hence „ is
an equivalence relation indeed. Denote by pv the equivalence class of an element v P Hzt0u. Let pH

be the quotient space pHzt0uq{„ and pπ : Hzt0u Ñ pH the quotient map.

1.1.2 Lemma The map π : Hzt0u Ñ PH factors through a unique homeomorphism κ : pH Ñ PH
which means that the diagram

Hzt0u

pH PH

π
pπ

κ

commutes and that κ is uniquely determined by this condition.

Proof. If v „ w, then the lines through v and through w coincide, hence π factors through a unique
continuous map κ : pH Ñ PH by the universal property of the quotient space. By surjectivity of π,
κ is surjective, too. By definition, κ maps pv to Kv, hence if Kv “ Kw, then v and w are linearly
dependant, and v „ w. So κ is injective. Continuity of the inverse κ´1 : PHÑ pH is a consequence
of the fact that PH carries the final topology with respect to π. Uniqueness of κ follows from pπ being
surjective.

1.1.3 Lemma The projection map π : Hzt0u Ñ PH and its restriction π|SH : SH Ñ PH to the
sphere of H are open.

Proof. By the preceding lemma it suffices to show that pπ : Hzt0u Ñ pH is open. Let U Ă Hzt0u be
open. Then

pπ´1
`

pπpUq
˘

“
ď

λPKˆ
λ ¨ U ,

13
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which is again open and the first part of the claim is proved. The second part follows in the same
way, since

pπ|´1
SH

`

pπ|SHpUq
˘

“
ď

λPSpKq
λ ¨ U

is open for all U Ă SH open.

1.1.4 Remark Strictly speaking, the projective space PH depends on the ground field K. If H is a
complex Hilbert space one therefore sometimes writes RPH or CPH to denote that the projective
space of all real respectively all complex lines is meant. In this work we agree that for H complex PH
always stands for the projective space of complex lines in H. If we want to consider the projective
space of real lines in some complex Hilbert space H instead, we write RPH.

1.1.5 The inner product on the underlying Hilbert space H induces the projective inner product or
ray inner product

|x¨, ¨y| : PH ˆ PHÑ r0, 1s, pKv,Kwq ÞÑ |xKv,Kwy| “
|xv, wy|

}v} }w}
, where v, w P Hzt0u,

on the associated projective space. Note that the projective inner product is well-defined, since |xv,wy|
}v} }w}

is homogeneous of degree 0 both in v and w.

Now we can formulate the first postulate of quantum mechanics.

(QM1) The state space of a quantum mechanical system is accomplished by a projective space PH
associated to a complex separable Hilbert space H. The elements v P Hzt0u are called state
vectors, the rays l P PH are the pure states.

If a quantum mechanical system is prepared so that it is in the state l P PH, the probability
that a measurement detects the system to be in the state k P PH is given by the transition
probability |xk,ly|2.

Because of their appearance in the first postulate of quantum mechanics we want to study projective
Hilbert spaces in some more depth. We will use topological, geometric and analytic tools for that
endeavor. A first result is the following.

1.1.6 Theorem Let PH be the projective space of a Hilbert space of dimension ě 2 over the field
K of real or complex numbers. Then the following holds true:

(i) The projective Hilbert space PH is a completely metrizable topological space.

(ii) A complete metric inducing the topology on PH is given by

d : PH ˆ PHÑ Rě0, pk,lq ÞÑ inf
 

}v ´ w}
ˇ

ˇ v P k, w P l & }v} “ }w} “ 1
(

.

(iii) The metric d and the transition amplitudes satisfy the relation

d2pk,lq “ 2
`

1´ |xk,ly|
˘

ě 1´ |xk,ly|2 for all k,l P PH . (1.1.1)
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(iv) The Fubini–Study distance

dFS : PH ˆ PHÑ Rě0, pk,lq ÞÑ arccos |xk,ly|

is a metric on PH which is equivalent to the metric d. More precisely

dpk,lq ď dFSpk,lq ď
?

2dpk,lq for all k,l P PH . (1.1.2)

The diameter of PH with respect to the Fubini–Study distance equals π
2 .

(v) The mapping P : PH Ñ BpHq which associates to every ray k the orthogonal projection onto
it is a bi-Lipschitz embedding. The gap metric

dgap : PH ˆ PHÑ Rě0, pk,lq ÞÑ }P pkq ´ P plq}

obtained by restricting the operator norm distance to PH is equivalent to d and satisfies

1
?

2
dpk,lq ď dgappk,lq “

b

1´ |xk,ly|2 ď dpk,lq for all k,l P PH . (1.1.3)

Proof. ad (ii)Let us first show that the map d is a metric indeed. By definition, d is non-negative
and symmetric. Assume dpk,lq “ 0 for two rays k,l. For given unit vectors v P k and w P l there
then exists a sequence pσkqkPN Ă S1 such that

lim
kÑ8

}v ´ σkw} “ 0 .

By compactness of S1 we can assume that the sequence pσkqkPN converges after possibly passing to
a subsequence. Let σ P S1 be its limit. Then }v ´ σw} “ 0, hence k “ l. Now let k,l,j P PH
and z P j a representing unit vector. Then

dpk,lq “ inf
 

}v ´ w}
ˇ

ˇ v P k, w P l & }v} “ }w} “ 1
(

ď

ď inf
 

}v ´ z} ` }z ´ w}
ˇ

ˇ v P k, w P l & }v} “ }w} “ 1
(

“

“ inf
 

}v ´ z}
ˇ

ˇ v P k & }v} “ 1
(

` inf
 

}z ´ w}
ˇ

ˇ w P l & }w} “ 1
(

“

“ dpk,jq ` dpj,lq ,

hence d satisfies the triangle inequality, and therefore is a metric.

Next we prove that the metric topology of d coincides with the quotient topology of π. Let v, w P SH.
By definition of the metric d one then has

dpKv,Kwq ď }v ´ w} .

This implies that for all ε ą 0
π pBSHpv, εqq Ă BPHpKv, εq ,

where BSHpv, εq denotes the ε-ball around v in the sphere with respect to the norm and BPHpKv, εq
the ε-ball around Kv in the projective Hilbert space with respect to the metric d. Hence the quotient
topology on PH is finer than the metric topology. If for given ε ą 0 a δ ą 0 is chosen so that δ ă ε,
then for every ray l with dpKv,lq ă δ there exists an element w P l X SH such that }v ´ w} ă ε
which means that l “ πpwq P π

`

Bpv, εq
˘

. Hence

BPHpKv, δq Ă π pBSHpv, εqq
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and the quotient topology on PH is coarser than the metric topology. So d induces the topology on
PH as claimed.

It remains to verify that d is a complete metric. To this end observe first that for every v P SH and
ray l there exists a representative w P l X SH such that xv, wy “ |xKv,ly|. We will call such a
representative of l distinguished with respect to v. Now let plnqnPN be a Cauchy sequence of rays.
Then there exists an increasing sequence of natural numbers n0 ă . . . ă nk ă nk`1 ă . . . such that

dpln,lmq ă
1

2k`1
for all n,m ě nk .

Choose a representative v0 P ln0 X SH and let v1 P SH be a representative of ln1 distinguished with
respect to v0. Then

}v1 ´ v0} “
a

2p1´Rexv0, v1yq “
a

2p1´ |xln0 ,ln1y|q “ dpln0 ,ln1q ă
1

2
.

Now assume we have constructed v0, . . . , vk P SH such that Kvl “ lnl for l “ 0, . . . , k and such
that for l “ 0, . . . , k ´ 1

}vl`1 ´ vl} ă
1

2l`1
. (1.1.4)

Let vk`1 P SH be a representative of lnk`1
distinguished with respect to vk. Then

}vk`1 ´ vk} “
a

2p1´Rexvk`1, vkyq “
b

2p1´
ˇ

ˇ

@

lnk`1
,lnk

Ď

ˇq “ dplnk`1
,lnkq ă

1

2k`1
.

We thus obtain a sequence pvkqkPN in H such that (1.1.4) is fulfilled for all l P N. The sequence
pvkqkPN is even a Cauchy sequence since for n ě m ě k

}vn ´ vm} ď
n´1
ÿ

k“m

}vk`1 ´ vk} ă
n´1
ÿ

k“m

1

2k`1
ă

1

2m
.

Let v P H be its limit. Then

lim
kÑ8

dpKv,lnkq ď lim
kÑ8

}v ´ vk} “ 0 .

Hence the sequence of rays plnqnPN converges to the ray Kv and PH is complete with respect to the
metric d. Claim (i) is now proved as well.

ad (iii)Let k,l be rays in H and v P k, w P l representing unit vectors. Let λ P S1 such that
xv, wy “ λ |xk,ly| and σ P S1 arbitrary. Then compute

}v ´ σw}2 “ 2
`

1´Rexv, σwy
˘

“ 2
`

1´ |xk,ly|Reσλ
˘

ě 2
`

1´ |xk,ly|
˘

.

For σ “ λ, equality holds, hence

d2pk,lq “ inf
!

}v ´ σw}2
ˇ

ˇ σ P S1
)

“ 2
`

1´ |xk,ly|
˘

.

With k,l, v, w as before and δ “ dpk,lq, the claimed inequality now follows immediately:

d2pk,lq ě δ2

ˆ

1´
1

4
δ2

˙

“ 2
`

1´ |xk,ly|
˘

ˆ

1´
1

2

`

1´ |xk,ly|
˘

˙

“ 1´ |xk,ly|2 .
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ad (iv)The map dFS is symmetric by symmetry of the projective inner product. By the assumption
dimH ě 2, the image of |x¨, ¨y| is the whole interval r0, 1s, since PH is connected, |x¨, ¨y| is bounded
by 1, |xl,ly| “ 1 for every ray l and since there exist orthogonal rays. The image of dFS therefore
coincides with r0, π2 s which already entails the claim about the diameter. By strict monotony of
arccos, dFSpk,lq “ 0 if and only if |xk,ly| “ 1. By (1.1.1) this is the case if and only if dpk,lq “ 0
which means if and only if k “ l. Let us now show that dFS satisfies the triangle inequality. To this
end let k,l,j be rays in H. If the Fubini–Study distance between any two of these rays is zero,
the triangle inequality obviously holds true, so we exclude that case. Choose representatives v P k,
w P l, z P j such that all have norm 1. After possibly multiplying v and z by elements of S1 X K
one can achieve that

xv, wy “ |xk,ly| and xw, zy “ |xl,jy| .

Let θ “ arccosxv, wy and ϕ “ arccosxw, zy. Then θ “ dFSpk,lq and ϕ “ dFSpl,jq. Now let x be
a unit vector in the plane through v and w which is orthogonal to w and y a unit vector in the plane
through w and z which is orthogonal to w. After possibly multiplying x and y by elements of S1XK
one can achieve that xv, xy, xz, yy P r0, 1s. Then

v “ xv, wyw ` xv, xyx and z “ xz, wyw ` xz, yy y .

By θ, ϕ P
“

0, π2
‰

and xv, xy, xz, yy ě 0 one concludes

v “ cos θ w ` sin θ x and z “ cosϕ w ` sinϕ y .

Hence, by the triangle inequality for the absolute value and the Cauchy–Schwarz inequality

|xv, zy| “ |cos θ cosϕ` sin θ sinϕ xx, yy| ě cos θ cosϕ´ sin θ sinϕ “ cospθ ` ϕq .

Since arccos is monotone decreasing, one obtains

dFSpk,jq “ arccos |xv, zy| ď θ ` ϕ “ dFSpk,lq ` dFSpl,jq .

So the Fubini–Study distance satisfies the triangle inequality and is a metric indeed.

Last we need to prove that the Fubini–Study distance is equivalent to d. To this end consider the
functions

f : r0,
?

2s Ñ R, s ÞÑ arccos

ˆ

1´
s2

2

˙

and g : r0,
π

2
s Ñ R, t ÞÑ

a

2p1´ cos tq .

Then both functions are continuous and differentiable on the interior of their domains. Now observe
that fp0q “ gp0q “ 0 and compute

f 1psq “
s

c

1´
´

1´ s2

2

¯2
“

s
b

s2 ´ s4

4

“
2

?
4´ s2

ď
?

2 for s P 0,
?

2

and

g1ptq “

?
2

2

sin t
?

1´ cos t
“

?
2

2

?
1` cos t ď 1 for t P 0,

π

2
.

By definition of dFS and (1.1.1), the mean-value theorem then entails

dpk,lq “ g pdFSpk,lqq ď dFSpk,lq “ f pdpk,lqq ď
?

2 dpk,lq for all k,l P PH .

Hence the estimate (1.1.2) is proved and the metrics d and dFS are equivalent.
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II.1. The postulates of quantum mechanics 1.1. The geometry of projective Hilbert spaces

ad (v)Recall that the operator norm distance of P pkq and P plq is given by

}P pkq ´ P plq} “ sup
 ›

›

`

P pkq ´ P plq
˘

z
›

›

ˇ

ˇ z P SH
(

. (1.1.5)

Choose normalized representatives v P k and w P l. After possibly multiplying w by a complex
number of modulus 1 we can assume that xv, wy “ |xk,ly| ě 0. If xv, wy “ 1 or in other words if v
and w are linearly dependent then k and l coincide and the claim is trivial, so we assume that v and
w are linearly independent. First we want to show that

›

›

`

P pkq ´ P plq
˘

z
›

› ď 1´ |xv, wy|2 for all z P SH . (1.1.6)

To this end expand z “ z‖`zK, where z‖ lies in the plane spanned by v and w and zK is perpendicular
to that plane. Then

`

P pkq ´ P plq
˘

z “ xz, vyv ´ xz, wyw “ xz‖, vyv ´ xz‖, wyw “
`

P pkq ´ P plq
˘

z‖ .

Hence it suffices to verify (1.1.6) for z P SHX Spanpv, wq. Observe that there exist unique elements
ϕ P r0, π2 s and µ P S1 X K such that xz, vy “ µ cosϕ. One can then find a normalized vector
wK P Spanpv, wq perpendicular to v such that

µz “ cosϕv ` sinϕwK .

Note that with this

w “ xv, wyv ` xw,wKywK and |xw,wKy|2 “ 1´ |xv, wy|2 .

Now compute
›

›

`

P pkq ´ P plq
˘

z
›

›

2
“

›

›

`

P pkq ´ P plq
˘

µz
›

›

2
“ }xz, vyv ´ xz, wyw}2 “

“ |xµz, vy|2 ´ 2xv, wyRe pxµz, vyxµz,wyq ` |xµz,wy|2 “

“ cos2ϕ´ 2 cosϕ xv, wy
`

cosϕ xv, wy ` sinϕRexw,wKy
˘

` cos2ϕ |xv, wy|2 ` 2 cosϕ xv, wy sinϕRexw,wKy ` sin2ϕ |xw,wKy|2 “

“ 1´ |xv, wy|2 .

This proves (1.1.6), but also implies by (1.1.5) that

}P pkq ´ P plq}2 “ 1´ |xv, wy|2 “ 1´ |xk,ly|2 .

The claim now follows by (iii) and the theorem is proved.

After having examined some topological properties we come now to the geometry of projective Hilbert
spaces.

1.1.7 Theorem The projective Hilbert space PH of a Hilbert space of dimension ě 2 over K has
the following differential geometric properties:

(i) PH carries a natural structure of an analytic manifold modelled on a Hilbert space isomorphic
to each of the Hilbert spaces Vw “ pKwqK, where w P H is a unit vector.

18



II.1. The postulates of quantum mechanics 1.1. The geometry of projective Hilbert spaces

(ii) Let SH Ă Hzt0u be the sphere in H. Then the restriction

π|SH : SHÑ PH, v ÞÑ Kv

is a real analytic fiber bundle with typical fiber S1 in the complex case and typical fiber Z{2 in
the real case.

(iii) Endow SH with the riemannian metric g inherited from the ambient Hilbert space. Then there
exists a unique riemannian metric gFS on PH such that π|SH : SHÑ PH becomes a riemannian
submersion. This metric is called the Fubini–Study metric. Its geodesic distance coincides with
the Fubini–Study distance dFS.

(iv) In case H is a complex Hilbert space, the projective space PH carries in a natural way the
structure of a Kähler manifold. Its complex structure is the one inherited from H, and its
riemannian metric is the Fubini–Study metric.

Proof. ad (i) For a given unit vector w P SH consider the linear form w5 : H Ñ K, v ÞÑ xv, wy.
Let Vw “ kerw5 “ pKwqK and Uw “ π

`

HzVw

˘

. Then, by Theorem 3.2.3, one has the orthogonal
decomposition H “ Vw ‘ Kw which gives rise to the orthogonal projection prVw : H Ñ Vw. Next
observe that Uw Ă PH is open since π´1pUwq “ HzVw is open and PH carries the quotient topology
with respect to π. Now we can define a chart hw : Uw Ñ Vw by

hwpKvq “ prVw

ˆ

v

xv, wy

˙

“
v

xv, wy
´ w for v P HzVw .

The map hw is well-defined since xv, wy ‰ 0 for all v P HzVw and since v
xv,wy “

λv
xλv,wy for all λ P K

ˆ.
Moreover, hw is continuous by continuity of the composition hw ˝ π|HzVw . If hwpKvq “ hwpKv1q,
then

prVw

ˆ

v

xv, wy
´

v1

xv1, wy

˙

“ 0 and
B

v

xv, wy
´

v1

xv1, wy
, w

F

“ 0,

hence Kv “ Kv1, so hw is injective. The map Vw Ñ Uw, y ÞÑ πpy`wq is obviously continuous and
inverse to hw since hw

`

πpy ` wq
˘

“ y for all y P Vw and since hw is injective. So we have proved
that hw : Uw Ñ Vw is a homeomorphism.

Next observe that all the Hilbert spaces Vw, w P SH are pairwise isomorphic since each of them has
codimension 1 in H. After this observation we show that for all v, w P SH

hwpUw X Uvq “ Vwz p´prKv w `Vw XVvq . (1.1.7)

Assume that y P Vw. The relation v R p´prKv w `Vw XVvq then is equivalent to prKvpy`wq ‰ 0,
which on the other hand is equivalent to the existence of some λ P Kˆ and x P Vv such that
y ` w “ λpx` vq. Since h´1

w pyq “ πpy ` wq, the latter is equivalent to the existence of an x P Vv

such that h´1
w pyq “ πpx` vq. But that is equivalent to h´1

w pyq P Uw X Uv. This proves (1.1.7).

The transition map between the chart hw and the chart hv is now given by

hv ˝ h
´1
w : Vwz p´prKv w `Vw XVvq Ñ Vvz p´prKw v `Vw XVvq , y ÞÑ prVv

y ` w

xy ` w, vy
.

But this map is analytic as a composition of analytic maps, hence any two charts are Cω-compatible.
Since PH is obviously covered by the open domains Uw, w P SH, the projective Hilbert space PH
becomes an analytic manifold locally modelled on a Hilbert space isomorphic to each of the Vw,
w P SH.
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II.1. The postulates of quantum mechanics 1.1. The geometry of projective Hilbert spaces

ad (ii) Fix a unit vector w P SH, let Vw “ pKwqK as before and and put

rVw “

#

Vw if K “ R ,

Vw ‘ iRw if K “ C .

Then rVw is the orthogonal complement of the real line Rw with respect to the real inner product
Rex´,´y on H. Hence any vector v P H can be uniquely represented in the form v “ v0w` v̂ where
v0 “ Rexv, wy P R and v̂ “ pr

rVw
pvq P rVw. Put Nw “ SHzt´wu. The stereographic projection

gw : Nw Ñ rVw, v ÞÑ
2

1` v0
v̂

then is a chart for SH with inverse

g´w : rVw Ñ Nw, z ÞÑ
1

4` }z}2
`

p4´ }z}2qw ` 4z
˘

.

Since 4´r
4`r ą ´1 for all r ě 0 and

}g´w pzq}
2 “

1

p4` }z}2q2
`

p4´ }z}2q2 ` p4}z}q2
˘

“ 1 for all z P rVw ,

the map g´w has image in Nw, indeed. Moreover, for z P rVw,

gw ˝ g
´
w pzq “

2

1` 4´}z}2

4`}z}2

4

4` }z}2
z “ z

and for v P Nw by application of the equality |v0|
2 ` }v̂}2 “ 1,

g´w ˝ gwpvq “ g2
w

ˆ

2

1` v0
v̂

˙

“
1

4` 4
p1`v0q2

}v̂}2

ˆ

4´
4

p1` v0q
2
}v̂}2w `

8

1` v0
v̂

˙

“

“
1

p1` v0q
2 ` }v̂}2

``

p1` v0q
2 ´ }v̂}2

˘

w ` 2p1` v0qv̂
˘

“

“
1

2p1` v0q
p2v0p1` v0qw ` 2p1` v0qv̂q “ v0w ` v̂ “ v .

Therefore, gw are g´w mutually inverse as claimed. Observe that for v P SHztwu the transition map
gw ˝ g

´
v : rVvztgvp´wqu Ñ rVwztgwp´vqu is given by

z ÞÑ gw

ˆ

1

4` }z}2
`

p4´ }z}2qv ` 4z
˘

˙

“

“
2

1` 1
4`}z}2

pRexp4´ }z}2qv ` 4z, wyq
pr

rVw

ˆ

1

4` }z}2
`

p4´ }z}2qv ` 4z
˘

˙

“

“
2

4` }z}2 `Rexp4´ }z}2qv ` 4z, wy

`

p4´ }z}2qv ` 4z ´Rexp4´ }z}2qv ` 4z, wyw
˘

,

which is real analytic. Since the open sets Nw with w P SH cover the sphere SH it thus becomes
a real analytic manifold modelled on a possibly infinite dimensional real Hilbert space. Now consider
the composition

rVwz2SVw Ñ Vw, z ÞÑ hw ˝ π ˝ g
´
w pzq “ prVw

ˆ

p4´ }z}2qw ` 4z

4´ }z}2 ` 4xz, wy

˙

“
4 pz ´ xz, wywq

4´ }z}2 ` 4xz, wy
.
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This is a real analytic map for every w P SH, so π|SH is real analytic. Let us show that it is a principal
fiber bundle. To this end put G “ Z{2 in the real case and G “ S1 in the complex case and note
that G acts smoothly on SH by scalar multiplication. Since G is abelian, we can write this also as a
right action ¨ : SH ˆG Ñ SH. By definition of the projective Hilbert space this right action is free
and transitive on the fibers of the projection π : SHÑ PH which therefore are homeomorphic to G.
For each w P SH the map

fw : SHzVw Ñ Uw ˆG Ă PH ˆG, v ÞÑ

ˆ

Kv,
xv, wy

|xv, wy|

˙

now is a bundle trivialization as the following argument shows. By construction, fw is real analytic
with inverse

f´w : Uw ˆGÑ SHzVw, pKv, λq ÞÑ λ
hwpKvq ` w
}hwpKvq ` w}

.

Indeed, fw is obviuously surjective and

f´w ˝ fwpvq “
xv, wy

|xv, wy|

hwpKvq ` w
}hwpKvq ` w}

“
xv, wy

|xv, wy|

v
xv,wy

}v}
|xv,wy|

“ v for all v P SHzVw .

Observe that pr2 fwpv ¨λq “ ppr2 fwpvqqλ for all v P SHzVw and λ P G, where pr2 denotes projection
onto the second coordinate. Finally note that for v, w P SH and z P SHzpVv YVwq,

fv ˝ f
´
w pKz, λq “ fv

ˆ

λ
hwpKzq ` w
}hwpKzq ` w}

˙

“

ˆ

Kz, λ
xz, vy

xz, wy

˙

“ pKz, λq ¨
xz, vy

xz, wy
,

where ¨ : pPH ˆ Gq ˆ G Ñ PH ˆ G denotes the right action ppl, µq, λqq ÞÑ pl, µq ¨ λ “ pl, µλq.
Hence π|SH : SH Ñ PH is a real analytic G-principal bundle with local trivializations fw, w P SH.

1.1.8 Remark Notice that the chart hw in the proof of (i) can be written as

hwpKvq “
v

xv, wy
´ w .

This is the same as for the charts of finite dimensional projective space KPn. Indeed, we can choose
w as a basis element, say ek, k “ 0, . . . , n and we have a line

rv0 : . . . : vk : . . . : vns P KPn

represented by the vector v “ pv0, . . . , vk, . . . , vnq, where vk ‰ 0. Then the standard chart is obtained
as follows. First normalize the vector representing the line in the k-th coordinate, i.e. divide by xv, wy:

„

v0

vk
: . . . : 1 : . . . :

vn
vk



,

and then map this to Kn via dropping the 1 in the k-th coordinate:
„

v0

vk
: . . . : 1 : . . . :

vn
vk



ÞÑ

ˆ

v0

vk
, . . . ,

vk´1

vk
,
vk`1

vk
, . . . ,

vn
vk

˙

.
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II.1. The postulates of quantum mechanics 1.2. Quantum mechanical symmetries

1.2. Quantum mechanical symmetries

Automorphisms of the projective Hilbert space and Wigner’s theorem

1.2.1 Assume that a quantum mechanical system is described by the projective Hilbert space PH and
that two observers O and O1 observe the system. While observer O describes the states the system is
in by rays k,l,li, , ... P PH, observer O1 describes them by possibly different rays k1,l1,l1i , ... P PH.
In other words this means that from the point of physics the rays are not invariant under observer
change. Rather does the observer change give rise to a map A : PH Ñ PH, l ÞÑ Al “ l1. This
map has to be invertible because the observer change is reversible. Even though rays describing the
states of the system do change under an observer change, the corresponding transition probabilities
remain invariant by the paradigm that the laws of (quantum) physics do not change from one observer
to another. Mathematically this can be expressed by

|xAk, Aly|2 “ |xk,ly|2 for all k,l P PH .

This leads us to the following definition.

1.2.2 Definition Let PH, PH1 and PH2 denote projective Hilbert spaces. One then calls a map
A : PH1 Ñ PH2 an isometry, if

|xAk, Aly| “ |xk,ly| for all k,l P PH1 .

A bijective isometry A : PHÑ PH is called an isometric automorphism, a Wigner automorphism or
just an automorphism.

In quantum mechanics, an automorphism of a projective Hilbert space PH is called a symmetry of
the quantum mechanical system described by PH.

1.2.3 Because the composition of isometric maps between projective Hilbert spaces is an isometric
map and the identity map on a projective Hilbert space is isometric the projective Hilbert spaces as
objects and the isometric maps as morphisms form a category which we call the Wigner category
denoted it by Wig. The Wigner automorphisms are then the automorphisms of that category.

The automorphisms of a projective Hilbert space PH form a group denoted by AutpPHq.

1.2.4 From now on in this section let the symbol H stand for a complex Hilbert space of dimension
ě 2. We want to examine what maps on H induce automorphisms of the corresponding projective
Hilbert space.

If S : H Ñ H is a unitary operator that is S P GLpHq and xSv, Swy “ xv, wy for all v, w P H,
then Ŝ : PH Ñ PH, Cv ÞÑ CSv is well-defined and an automorphism of PH. But not every
automorphism of PH is of the form Ŝ with S P UpHq. Namely let T : H Ñ H be an anti-unitary
map that is T P GLpH,Rq, T pλvq “ λTv for all v P H, λ P C and xTv, Twy “ xv, wy “ xw, vy
for all v, w P H. Then T̂ : PH Ñ PH, Cv ÞÑ CTv is also well-defined, invertible and preserves
transition probabilities. Therefore T̂ P AutpPHq. We will later see that T̂ is not equal to any of
the automorphisms Ŝ with S P UpHq. Observe also that by the dimension assumption on H there
exists an anti-unitary transformation, for example the real linear map T : HÑ H which acts on some
initially chosen Hilbert basis pvjqjPJ by T pvjq “ vj and T p ivjq “ ´ ivj .
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II.1. The postulates of quantum mechanics 1.2. Quantum mechanical symmetries

One easily checks that the products ST and TS of a unitary operator S : HÑ H and an anti-unitary
operator T : HÑ H are anti-unitary. If T1, T2 : HÑ H are both anti-unitary, then the product T1T2

is unitary. Hence we obtain a new group AUpHq consisting of all unitary and anti-unitary operators
on H. The map

π : AUpHq Ñ AutpPHq, S ÞÑ Ŝ

then is a group homomorphism. Its kernel coincides with Up1q – S1. To see this let πpSq “ idPH.
Then for every ray l there exists a complex number µl such that Sv “ µCvv for all v P l. By
unitarity |µl| “ 1. Let v, w P H be two linearly independant vectors of norm 1. Since

µCpw´vqpw ´ vq “ Spw ´ vq “ µCww ´ µCvv ,

one has 0 “ pµCpw´vq ´ µCwqw ` pµCv ´ µCpw´vqqv which implies µCw “ µCpw´vq “ µCv by linear
independence of v and w. Hence all the µCv coincide and S “ µ idH for some complex number
µ P Up1q – S1. A consequence of this observation is also that the homomorphism π|UpHq : UpHq Ñ

AutpPHq, S ÞÑ Ŝ is not surjective because for every anti-unitary T and unitary S the product TS´1

is anti-unitary, hence can not be an element of Up1q. We denote the image of UpHq under π by
UpPHq and call its elements the unitary automorphisms of PH.

1.2.5 Theorem (Wigner’s theorem, Wigner (1944)) Let H be a complex Hilbert space of di-
mension ě 2. Then the sequence of group homomorphisms

1 ÝÑ Up1q ÝÑ AUpHq
π
ÝÑ AutpPHq ÝÑ 1

is exact.

1.2.6 Remark Wigner’s theorem was first stated in Wigner (1944), but with an incomplete proof.
Only several years later complete and independent proofs of Wigner’s result were given by Uhlhorn
(1962), Lomont & Mendelson (1963), and Bargmann (1964).

Proof. Wigner’s theorem is an immediate consequence of the precedinmg considerations and the
following more general result.

1.2.7 Theorem (Optimal version of Wigner’s theorem, Gehér (2014)) LetH be a complex Hilbert
space of dimension ě 2. Then for every isometry A : PH Ñ PH there exists a linear or conjugate-
linear isometry S : H Ñ H such that A “ Ŝ, where Ŝ is the isometry on PH which maps the ray
Cv with v P Hzt0u to the ray CSv.

Proof. To prove the claim we will follow the elementary argument by Gehér (2014).

Lifting of projective representations and Bargmann’s theorem

1.2.8 Theorem (Bargmann’s Theorem) LetH be a complex Hilbert space and G a connected and
simply connected Lie group with H2pg,Rq “ 0. Then every projective representation τ : GÑ UpPHq
can be lifted to a unitary representation σ : GÑ UpHq that is π ˝σ “ τ , where π : UpHq Ñ UpPHq
is the canonical projection.

1.2.9 Remark The lifting theorem was proved first in Bargmann (1954). The short proof we present
here goes back to Simms (1971). We closely follow his argument.
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Proof of the theorem. Let E be the fibered product of π and τ with the canonical homomorphisms
rτ : E Ñ UpHq and πE : E Ñ G. For the resulting commutative diagram of groups with two exact
rows

1 Up1q E G 1

1 Up1q UpHq UpPHq 1

id

πE

rτ τ

π

we want to construct a section s : G Ñ E of πE : E Ñ G which is a splitting meaning that s is a
group homomorphism and πE ˝ s “ idG. With the construction of such an s we are done because
then the unitary representation rτ ˝ s is a lifting of the projective representation τ : GÑ UpPHq.

Observe that E is a Lie group by Kuranishi’s theorem, see (Montgomery & Zippin, 1955, §4.3), since
E is central extension of a Lie group, hence locally compact, and there exist local continuous sections
σ : U Ñ E that is U Ă G is open and πE ˝ σ “ idU .

The short exact sequence of Lie groups

1 ÝÑ Up1q ÝÑ E
πE
ÝÝÑ G ÝÑ 1

induces a short exact sequence of Lie algebras

0 ÝÑ R ÝÑ e
TπE
ÝÝÝÑ g ÝÑ 0 , (1.2.1)

where e is the Lie algebra of E and g the one of G. Observe that TπE is surjective with kernel R
being in the center of e. Choose a linear map λ : g Ñ e such that πE ˝ λ “ idg. Put Θpx, yq “
rλpxq, λpyqs ´ λprx, ysq for all x, y P g. Then

TπE ˝Θpx, yq “ rTπE ˝ λpxq, TπE ˝ λpyqs ´ TπE ˝ λprx, ysq “ rx, ys ´ rx, ys “ 0 .

Hence Θpx, yq is in the kernel of TπE which means that Θ is a map g ˆ g Ñ R. By definition,
Θ : gˆ g Ñ R is skew symmetric. Let us show that it satisfies the Jacobi identity. Compute, using
the Jacobi identity for the Lie algebra bracket and the fact that Θ has image in the center of e,

Θprx, ysq, zq`Θpry, zs, xq `Θprz, xs, yq “

“ rλprx, ysq, λpzqs ` rλpry, zsq, λpxqs ` rλprz, xsq, λpyqs´

´ λprrx, ys, zsq ´ λprry, zs, xsq ´ λprrz, xs, ysq “

“ rrλpxq, λpyqs, λpzqs ` rrλpyq, λpzqs, λpxqs ` rrλpzq, λpxqs, λpyqs´

´ rΘprx, ysq, λpzqs ´ rΘpry, zsq, λpxqs ´ rΘprz, xsq, λpyqs “ 0 .

Therefore, Θ is a Lie algebra 2-cocycle. By H2pg,Rq “ 0, there exists a linear θ : g Ñ R such that
Θpx, yq “ θprx, ysq for all x, y P g. Put µpxq “ λpxq ` θpxq. Then, since θ has values in the center
of e,

rµpxq, µpyqs “ rλpxq ` θpxq, λpyq ` θpyqs “ rλpxq, λpyqs “

“ Θpx, yq ` λprx, ysq “ θprx, ysq ` λprx, ysq “ µprx, ysq .

Hence µ : gÑ e is a Lie-Algebra homomorphism and fulfills

TπE ˝ µpxq “ TπEpλpxq ` θpxqq “ TπEpλpxqq “ x for all x P g .
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So µ is also a section of TπE which shows that the short exact sequence of Lie algebras (1.2.1) is
split.

By π1pGq “ 1, the Lie algebra homomorphism µ : g Ñ e has a lifting to a group homomorphism
s : GÑ E such that πE ˝ s “ idg. The proof is finished.
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II.2. Deformation quantization

2.1. Fedosov’s construction of star products

The various Weyl algebras of a Poisson vector space

2.1.1 Definition By a Poisson vector space over the field K of real or complex numbers one un-
derstands a pair pV,Πq where V is a finite dimensional vector space over K and Π P Λ2V is an
antisymmetric bivector.

Given two Poisson vector spaces pV,Πq and pW,Ξq, a linear map f : V Ñ W is called a morphism
of Poisson vector spaces if f˚Π :“ pf b fqΠ “ Ξ.

Poisson vector spaces together with their morphisms obviously form a category which we denote by
PVecK.

2.1.2 Example Let V “ R2n or V “ R2n`1. Then V together with the bivector Πcan “
řn
k“1

B
Bxk`n

^

B
Bxk

is a Poisson vector space. One calls Πcan the canonical (constant) Poisson structure on V .

2.1.3 Let rk Π be the rank of Π that is the dimension of the image of the musical map

Π7 : V ˚ Ñ V, α ÞÑ α yΠ ,

where

α y : ΛkV Ñ Λk´1V,
N
ÿ

i“1

vi,1 ^ . . .^ vi,k ÞÑ
N
ÿ

i“1

k
ÿ

j“1

p´1qj`1xα, vi,jy ^ vi,1 ^ . . .^ xvi,j ^ . . .^ vi,k

denotes the interior product of a 1-form with an alternating k-vector. Then rk Π is even dimensional,
and pV,Πq isomorphic as a Poisson vector space to the product of pRrk Π,Πcanq with pRdimV´rk Π, 0q.

2.1.4 Remark The category PVecK is dual to the category PSVecK of presymplectic vector spaces
over K that is the category of all finite dimensional K-vector spaces W together with a (constant)
2-form ω P Λ2W ˚.

A contravariant isomorphism between these two categories is given by the dualization functor ˚ :
PVecK Ñ PSVecK which maps V ÞÑ V ˚ and the bivector Π on V to the 2-form ω : V ˚ ˆ V ˚ Ñ K,
pα, βq ÞÑ β y pα yΠq. Its inverse is again given by dualization.
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2.1.5 The bivector Π of a Poisson vector space pV,Πq turns V into a Poisson manifold with bracket
t´,´u : C8pV q ˆ C8pV q Ñ C8pV q given by

tf, gu “ dg y pdf yΠq for f, g P C8pV q .

By construction, t´,´u is antilinear and a derivation in each component. Since for all linear functions
λ, µ : V Ñ K the Poisson bracket tλ, µu is constant, the Poisson bracket ttλ, µu, νu of three linear
functions vanishes, hence the Jacobi identity holds for linear and affine functions. This implies that
the Jacobi identity is satisfied for all smooth functions, hence t´,´u is a Poisson bracket on V indeed.
We call it the constant Poisson structure associated to Π.

2.1.6 Definition The Weyl algebra of a Poisson vector space pV,Πq is defined by

ApV,Πq “ T‚V ˚{pαb β ´ β b α´ β y pα yΠq | α, β P V ˚q ,

where pXq stands for the ideal generated by X Ă T‚V ˚.

2.1.7 Remarks (a) To a presymplectic vector space pW,ωq one associates the Weyl algebra

ApW,ωq “ T‚W {pv b w ´ w b v ´ w x pv xωq | v, w PW q ,

where x denotes the interior product of a vector with a k-form. If pW,ωq is the dual of a Poisson
vector space pV,Πq, then the two Weyl algebras ApV,Πq and ApW,ωq coincide by definition.
We will silently make use of this fact in the following considerations.

(b) Let K be a field of characteristic 0 and Krx1, . . . , xns the polynomial ring over K in n (commut-
ing) indetereminates. The n-th Weyl algebra AnpKq over K is then defined as the subalgebra of
the endomorphism ring EndKpKrx1, . . . , xnsq generated by the elements

pxk : Krx1, . . . , xns Ñ Krx1, . . . , xns, p ÞÑ xk ¨ p

and
Bk : Krx1, . . . , xns Ñ Krx1, . . . , xns, p ÞÑ

Bp

Bxk
,

where k runs through 1, . . . , n. The commutation relations for these operators are, using the
Kronecker delta,

rpxk, pxls “ 0, rBk, Bls “ 0, rBk, pxls “ δk,l . (2.1.1)

Recall that AnpKq coincides with the ring of differential operators on Krx1, . . . , xns in the sense
of Grothendieck. For a proof see Coutinho (1995).

(c) Let ω be a the canonical symplectic form on R2n. The Weyl algebra ApR2n, ωq then coincides
naturally with the algebra of differential operators on Rn with polynomial coefficients. To see this
denote the canonical basis of R2n by pQ1, . . . , Qn, P1, . . . , Pnq and the corresponding coordinate
functions by pq1, . . . , qn, p1, . . . , pnq. The commutators of these basis elements in the Weyl
algebra are

rQk, Qls “ 0, rPk, Pls “ 0, rPk, Qls “ δk,l . (2.1.2)

Therefore, any element of ApR2n, ωq
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Next consider the symmetric (covariant) tensor algebra S‚V ˚ over V . Recall that it is defined as the
algebra with underlying vector space

S‚V ˚ “
à

kPN
SkV ˚ , (2.1.3)

where SkV ˚ Ă
Âk V ˚ denotes the space of all symmetric (covariant) k-tensors in V . An element

t P SkV ˚ is called homogenous of symmetric degree degs t “ k. It can be written in the form

t “
ÿ

iPI

ti,1 b ...b ti,k ,

where I is a finite index set, and ti,1, . . . , ti,k are elements of the dual V ˚.

The bundle of formal Weyl algebras

Let M be a smooth manifold. Recall the notion of the symmetric (covariant) tensor algebra bundle
S‚T ˚M over M . It is defined by

S‚T ˚M “
à

kPN
SkT ˚M , (2.1.4)

where SkT ˚M “
Ť

pPM SkT ˚pM Ă
Âk T ˚M is the bundle of all symmetric (covariant) k-tensors.

Note that we have a canonical (fiberwise) isomorphism SkT ˚M –
`

SkTM
˘˚ which leads to the

canonical identifications

S‚M “
à

kPN
SkT

˚M –
à

kPN
SkTM “ S‚TM .

An element t P SkT ˚M is called homogenous of symmetric degree degs t “ k. It can be written in
the form

t “
ÿ

iPI

t1,i b ...b tk,i ,

where I is a finite index set, and t1,i, . . . , tk,i are elements of the cotangent bundle T ˚M having the
same footpoint as t. Every element of the symmetric tensor algebra bundle S‚M can be expanded as
a finite sum of homogeneous symmetric tensors.

The (fiberwise) symmetric product _ : SM ˆM SM Ñ SM is constructed by defining it, for each
p P M , first on homogeneous elements t “

ř

iPI t1,i b ...b tk,i P SkpM and s “
ř

jPJ sk`1,j b ...b

sk`l,j P SlpM by

_pt, sq “ t_ s “
1

k! l!

ÿ

σPSk`l

ÿ

iPI,jPJ

vσp1q,ij b ...b vσpk`lq,ij , where

vm,ij “

#

tm,i if 1 ď m ď k ,

sm,j if k ă m ď k ` l ,

(2.1.5)

and then extending it linearly in each component to the whole fiber S‚pMˆS‚pM . Using the canonical
symmetrization operator

S : T‚M “ T‚TM Ñ SM, t “
ÿ

iPI

t1,i b ...b tk,i ÞÑ
ÿ

σPSk

ÿ

iPI

tσp1q,i b ...b tσpkq,i
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we can also write

t_ s “

ˆ

k ` l

k

˙

Sptb sq. (2.1.6)

Together with the symmetric product SM now becomes a graded algebra. Note that it is canonically
isomorphic to the algebra C8polpTMq of smooth functions on TM which are polynomial in the fibers
of TM .

Let us define an action of an antisymmetric bivector field B “
ř

ιB
1
ι b B2

ι P Ω2M on SM b SM
by

SM b SM Q tb s ÞÑ B ptb sq “
ÿ

ι

B1
ι { tbB2

ι { s P SM b SM. (2.1.7)

Under the isomorphism SM Ñ C8polpTMq the bivector field B acts as a bidifferential operator, i.e. we
have for f, g P C8polpTMq, v, w P TxM and x PM

B pf b gqpv, wq “
ÿ

ι

B1
ι fpvq bB

2
ι gpwq “

ÿ

ι

d

dt
fpv ` tB1

ι q

ˇ

ˇ

ˇ

ˇ

t“0

d

ds
gpw ` sB2

ι q

ˇ

ˇ

ˇ

ˇ

s“0

. (2.1.8)

With these preparations in mind we are now able to define Fedosov’s notion of the bundle of formal
Weyl algebras.

2.1.8 Definition Let pM,ωq be a symplectic manifold of dimension 2n and Π the corresponding
Poisson bivector. The formal Weyl algebra AM of M is then defined as the space SM rr~ss of formal
power series with coefficients in SM together with the Moyal product ˝ given by

f ˝ g “
ÿ

kPN

1

k!

ˆ

i ~
2

˙k

_

´

Πk pf b gq
¯

“ _

ˆ

exp

ˆ

i ~
2

Π

˙

f b g

˙

. (2.1.9)

Note that in this definition all operations on SM were naturally extended to SM rr~ss.

On the Weyl algebra bundle AM we introduce the Fedosov filtration

AM “ A0M Ă A1M Ă A2M Ă ... Ă AkM Ă ... (2.1.10)

by defining

AkM “

$

&

%

t “
ÿ

l,rPN
trl ~l P SM rr~ss : trl P SrM & trl “ 0 for r ` 2l ă k

,

.

-

. (2.1.11)

The topology generated by this filtration is called the F-topology. Furthermore we define the F-degree
degF t of an element t P AM as the supremum of all k P N with t P AkM .

By definition degF 0 “ 8, degF ~ “ 2 and degF λ “ m for any covariant m-tensor field λ.

We have to show that ˝ is a well-defined product on SM rr~ss and that the AkM define a filtration
on the algebra AM indeed. It suffices to show that ˝ is associative and that AkM ˝ AlM Ă Ak`lM
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holds for all k, l P N. Associativity of ˝ follows from the following chain of equalities:

pf ˝ gq ˝ h “
ÿ

kPN

ÿ

lPN

ˆ

i~
2

˙k`l

_Πk
´

_Πl pf b gq b h
¯

“
ÿ

rPN

ÿ

k`l“r

ˆ

i~
2

˙r

_Πk
´

_Πl pf b gq b h
¯

“
ÿ

rPN

ÿ

k`l`m“r

ˆ

i~
2

˙r

_

´

Πk
13 Πl

23 Πm
12 pf b g b hq

¯

“
ÿ

rPN

ÿ

k`l`m“r

ˆ

i~
2

˙r

_

´

Πk
13 Πm

12 Πl
23 pf b g b hq

¯

“
ÿ

rPN

ÿ

k`l“r

ˆ

i~
2

˙r

_Πl
´

f b_Πk pg b hq
¯

“ f ˝ pg ˝ hq.

(2.1.12)

Here we have denoted by Πικ pab bb cq the natural action of Π on the ι, κ-factors of ab bb c and
have used the Jacobi-identity for the Poisson bivector Π. The second claim follows immediately from
Eq. (2.1.9) and the definition of AkM .

to do:By definition SM is a graded C8pMq-module.

Besides AM we will consider in the following differential forms with values in AM , i.e. we will consider
the space ΩAM :“ AM bΩM – pSM bΩMqrr~ss “ pSM bΩMqN. By ˝ and the exterior product
on ΩM this vector space carries a multiplicative structure which also will be denoted by ˝. A second
multiplicative structure, which we denote by ¨, comes from the symmetric product on SM and the
exterior product on ΩM . The filtration on AM induces one on ΩAM by

ΩAM Ă A1M b ΩM Ă ... Ă AkM b ΩM Ă ... ; (2.1.13)

thus making pΩAM, ˝q into a filtered algebra. Additionally ΩAM posseses a graduation coming from
ΩM :

ΩAM “
à

1ďqď2n

AM b ΩqM. (2.1.14)

The corresponding degree function ΩAM Ñ R2n will be denoted by dega, the antisymmetric degree.
Together with the symmetric degree ΩAM now becomes a bigraded vector space. Therefore we have
for any element a P ΩAM a decomposition

a “
ÿ

pq

apq, (2.1.15)

where apq is the unique homogeneous component of a with symmetric degree p and antisymmetric de-
gree q or in other words with bidegree pp, qq. With respect to the product ¨, but not ˝, ΩAM becomes
a bigraded algebra. Nevertheless pΩAM, ˝q is a graded algebra with respect to the antisymmetric
degree.
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Next we introduce the ˝-supercommutator r´,´s on ΩAM as the unique bilinear map such that
for two elements a, b P ΩAM being homogeneous with respect to the antisymmetric degree the
equation

ra, bs “ a ˝ b ´ p´1qdega a¨dega b b ˝ a (2.1.16)

holds. The supercommutator induces for every a P ΩAM an adjoint map

ad paq : ΩAM Ñ ΩAM, b ÞÑ ra, bs. (2.1.17)

Moreover 1
~ ad paq is a well-defined map on ΩAM and comprises a superderivation of ΩAM . The

symplectic form ω “
ř

ij ωij dxi b dxj can be interpreted as an element of AM b Ω1M . Thus it
gives rise to the inner superderivation

δ “ ´
i

~
ad pωq (2.1.18)

of ΩAM . Let us denote for any smooth vector field V P C8pTMq and every element f b α P
AM bΩM the insertion pV xfq bα (resp. f b pV xαq) of V in the symmetric (resp. antisymmetric)
part of f bα by V xs pf bαq (resp. V xa pf bαq). With this notation we get the following expansion
of δ in local coordinates:

δpaq “ ´
i

~

´

ω ˝ a´ p´1qka ˝ ω
¯

“´
i

~

´

ω ¨ a´ p´1qka ¨ ω
¯

l jh n

“0

`

`
1

2

ÿ

kl

Πkl ω

ˆ

B

Bxk
,´

˙

¨

ˆ

B

Bxl

˙

x a´ p´1qkΠkl

ˆ

B

Bxk
xa

˙

¨ ω

ˆ

B

Bxl
,´

˙

“
ÿ

l

p1b dxlq ¨

ˆ

B

Bxl
x a

˙

.

(2.1.19)

Here we have used the local expansion

Π “
ÿ

kl

Πkl
B

Bxk
b
B

Bxl
(2.1.20)

and the fact that
ÿ

k

Πkl ω

ˆ

B

Bxk
,´

˙

“ dxl. (2.1.21)

Analogously we can define a second operator δ˚ on ΩAM by setting locally

δ˚ paq “
ÿ

l

pdxl b 1q ¨

ˆ

B

Bxl
xa a

˙

. (2.1.22)

δ˚paq is well-defined, as it can be written in the form

δ˚paq “ ep_ b xqa, (2.1.23)

where e P C8pTMq is the Euler tensor field which locally is given by e “
ř

l dxl b
B
Bxl

. Note that
δ˚ is not a superderivation of ΩAM .
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2.1.9 Proposition The operators δ and δ˚ are homogeneous of symmetric degree ´1 (resp. 1) and
antisymmetric degree 1 (resp. ´1). Moreover they fulfill the following two relations:

δ2 “ pδ˚q2 “ 0, (2.1.24)
pδ δ˚ ` δ˚δqpf b αq “ pp` qqpf b αq, (2.1.25)

where f P AM is homogeneous of symmetric degree p and α P ΩqM .

Proof. The first property follows from the local expressions for δ and δ˚:

δ2pf b αq “
ÿ

kl

ˆ

B

Bxk
_
B

Bxl

˙

{ f b dxk ^ dxl ^ α “ 0, (2.1.26)

δ˚2
pf b αq “

ÿ

kl

pdxk _ dxlq b

ˆ

B

Bxk
^
B

Bxl

˙

{α “ 0, (2.1.27)

as both sums are symmetric and antisymetric with respect to the indices k, l. The second property is
also a direct consequence of the local expressions for δ and δ˚.

Denote by δ´ : ΩAM Ñ ΩAM the operator

ΩAM Q a “
ÿ

pq

apq ÞÑ δ´paq “
ÿ

p`qą0

1

p` q
δ˚apq P ΩAM. (2.1.28)

Then the above proposition entails a kind of Hodge-De Rham decomposition in ΩAM , namely the
relation

a “ δ δ´paq ` δ´ δpaq ` a00. (2.1.29)

for every a P ΩAM .

In the following the notion of the ˝-center Zpq˝M of ΩAM will be very useful. It is defined as the
kernel of the family

`

ad paq
˘

aPΩAM
and obviously fulfills the equation

Zpq˝M “ S0M b ΩM “ ta P ΩAM : degs a “ 0u. (2.1.30)

There are two canonical projections from ΩAM in Zpq˝M , namely

π00 : ΩAM Ñ ΩAM, a “
ÿ

pq

apq ÞÑ a00 (2.1.31)

and

π0 : ΩAM Ñ ΩAM, a “
ÿ

pq

apq ÞÑ
ÿ

q

a0q. (2.1.32)
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Connections on the formal Weyl algebra

We now want to give ΩAM some more differential geometric structure. To achieve this let us choose
a symplectic connection ∇ on M , i.e. a connection ∇ fulfilling ∇ω “ 0. Then ∇ gives rise to a
connection ∇ on ΩAM by defining

∇pf b αq “ ∇f ¨ α` f b dα (2.1.33)

for f P AM and α P ΩM . Hereby we naturally regard ∇f as an element of Ω1AM . As ∇ is supposed
to be torsionfree, we have dα “ ∇α, so ∇ : ΩAM Ñ ΩAM is a connection on ΩAM indeed, i.e. it
fulfills

∇pϕaq “ p1b dϕq ¨ a` ϕDa (2.1.34)

for every a P ΩAM and ϕ P C8pMq. Moreover, ∇ is a homogeneous superderivation of pΩAM, ¨q
with bidegree p0, 1q, as the equation

∇ ppf b αq ¨ pg b βqq “ ∇ ppf _ gq b pα^ βqq

“ p∇f ¨ g ` f ¨∇gq ¨ pα^ βq ` pf _ gq ¨
´

dα^ β ` p´1qdega α α^ dβ
¯

“ p∇f ¨ α` f b dαq ¨ pg b αq ` p´1qdega α pf b αq ¨ p∇g ¨ β ` g b dβq
“ p∇pf b αqq ¨ pg b βq ` p´1qdega α pf b αq ¨ p∇pg b βqq

(2.1.35)

holds for homogeneous f bα, gbβ P ΩAM . With respect to ˚, the connection ∇ is a homogeneous
superderivation of antisymmetric degree 1 as well. To prove this first recall that ∇Π “ 0, hence

∇pf ˚ gq “ p∇fq ˚ g ` f ˚ p∇gq. (2.1.36)

But then

∇ pf b αq ˚ pg b βqq “ ∇pf ˚ gq ¨ pα^ βq ` pf ˚ gq b dpα^ βq

“ pp∇fq ˚ g ` f ˚ p∇gqq ¨ pα^ βq ` pf ˚ gq b
´

dα^ β ` p´1qdega αα^ dβ
¯

“ p∇f ¨ α` f b dαq ˚ pg b αq ` p´1qdega α pf b αq ˚ p∇g ¨ β ` g b dβq
“ p∇pf b αqq ˚ pg b βq ` p´1qdega α pf b αq ˚ p∇pg b βqq

(2.1.37)

which gives the claim.

2.1.10 Proposition The ˚-superderivation ∇ fulfills the following relations:

r∇, δs “ ∇δ ` δ∇ “ 0, (2.1.38)

r∇,∇s “ 2∇2 “ 2
i

~
ad pR̃q, (2.1.39)

where R̃ P ST ˚M bΩ2M is the contraction R̃ “ ωxR of the curvature tensor R of ∇. Furthermore
the contracted curvature R̃ satisfies the relation

∇R̃ “ δR̃ “ 0. (2.1.40)
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Proof. By ∇ω “ 0 we have

r∇, δs “ ´ i
~
r∇, ad pωqs “ ´

i

~
p∇ωq “ 0. (2.1.41)

As ∇ has antisymmetric degree 1, the supercommutator of ∇ with itself is equal to 2∇2. But now
we have in local coordinates

2∇2pf b αq “ 2∇p∇f ¨ α` f b dαq “ 2∇2f ¨ α

“
ÿ

rs

p∇Br∇Bs ´∇Bs∇Brqf b dxr ^ dxs ^ α

“ ´
ÿ

klrs

Rklrs dxl _ pBk x fq b dxr ^ dxs ^ α

(2.1.42)

and

2
i

~
ad pR̃q pf b αq “ 2

i

~

´

R̃ ˚ pf b αq ´ pf b αq ˚ R̃
¯

“

“ ´
1

2

˜

ÿ

klmrs

Πmk R̃mlrs dxl _ pBk x fq b dxr ^ dxs ^ α´

´
ÿ

klmrs

Πmk R̃klrs pBm x fq _ dxl b α^ dxr ^ dxs

¸

“ ´
ÿ

klrs

Rklrs dxl _ pBk x fq b dxr ^ dxs ^ α,

(2.1.43)

which gives the second equation. The relation ∇R̃ “ 0 is nothing else but the first Bianchi identity
for the connection ∇. Last we have

δR̃ “
1

2

ÿ

klrs

Rklrs dxl b dxk ^ dxr ^ dxs “ 0, (2.1.44)

as Rklrs is cyclic with respect to the indices pl, r, sq.

Besides ∇ we will also consider more general connections on ΩAM , in particular connections D :
ΩAM Ñ ΩAM of the form

D “ ∇` i

~
ad pγq, (2.1.45)

where γ is an element of Ω1AM , uniquely determined by D up to a central one-form. We call such
a D a Weyl connection and attach to it a now unique one-form γD fulfilling Eq. (2.1.45) and the
normalization condition

π0 pγDq “ 0. (2.1.46)

The two-form
Ω “ R̃`∇γD `

i

~
γD ˚ γD (2.1.47)

will then be called the Weyl curvature of D. Furthermore a Weyl connection D will be called abelian,
if its Weyl curvature is a central form or, using the following proposition, if

D2 “
i

~
ad pΩ̃q “ 0. (2.1.48)
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2.1.11 Proposition Let D be a Weyl connection on ΩAM and Ω its Weyl curvature. Then Ω fulfills
the Bianchi-identity

DΩ “ 0 (2.1.49)

and the relation
D2 “

i

~
ad pΩq. (2.1.50)

Proof. The Bianchi-identity follows from

DΩ “ ∇Ω`
i

~
rγD,Ωs “

“ ∇R̃`∇2γD `
i

~
r∇γD, γDs `

i

~
rγD, R̃s `

i

~
rγD,∇γDs `

i

~
rγD, γ

2
Ds.

(2.1.51)

By the Bianchi identity for ∇ the first term vanishes, the last one as γD commutes with γ2
D. By

Eq. (2.1.39) the second and the fourth term cancel each other, hence DΩ “ 0. Using Proposition
2.1.10 the second equation follows immediately:

D2 “ ∇2 `
i

~
ad p∇γDq `

1

2

ˆ

i

~

˙2

ad prγD, γDsq

“
i

~
ad

ˆ

R̃`∇γD `
i

~
γD ˚ γD

˙

.

(2.1.52)

We now will look for Abelian D or in other words for conditions on γD which guarantee D to be
Abelian. To achieve this let us write γD in the form

γD “ ω ` r, (2.1.53)

where r P Ω1AM . Then we have

Ω “ R̃`∇r ` i

~
r ˚ r `

i

~
ad pωqprq ´ 1b ω, (2.1.54)

as ω ˚ ω “ i~ 1b ω. If now r fulfills

δprq “ R̃`∇r ` i

~
r ˚ r, (2.1.55)

then Ω “ ´1b ω, hence D will be Abelian.

2.1.12 Lemma An element r P Ω1AM with degF r ě 2 fulfills δ´r “ 0 and Eq. (2.1.55) if and only
if

r “ δ´R̃` δ´
ˆ

∇r ` i

~
r ˚ r

˙

. (2.1.56)

Proof. If the first condition is satisfied, (2.1.56) follows easily from pδ´δ ` δδ´qr “ r. Let us show
the converse and suppose (2.1.56) to be true. Then obviously δ´r “ 0 by pδ´q2 “ 0. Let D be the
Weyl connection on ΩAM with γD “ ω` r. To prove (2.1.55) it then suffices to show Ω “ ´1bω.
We have

δ´pΩ` 1b ωq “ δ´
ˆ

R̃`∇r ` i

~
r ˚ r

˙

´ δ´δr “ r ´ δ´δr “ δδ´r “ 0, (2.1.57)
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hence by the Bianchi identity DΩ “ 0 and Dp1b ωq “ 1b dω “ 0 the relation

δpΩ` 1b ωq “ pD ` δqpΩ` 1b ωq (2.1.58)

is true. Using the Hodge-deRham decomposition in ΩAM this entails

Ω` 1b ω “ δ´pD ` δqpΩ` 1b ωq “ δ´
ˆ

∇` i

~
ad prq

˙

pΩ` 1b ωq. (2.1.59)

As the operator δ´
`

∇` i
~ ad prq

˘

raises the F-degree by 1, we must have Ω` 1b ω “ 0. But this
gives the claim.
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II.3. Quantum spin systems

3.1. The quasi-local algebra of a spin lattice model

3.1.1 By a Bravais lattice or briefly just a lattice one understands a subgroup Λ of the additive group
Rd of the form

Λ “

#

d
ÿ

i“1

λiai
ˇ

ˇ λi P Z for i “ 1, . . . , d

+

,

where pa1, . . . , adq is a basis of Rd. We then say that Λ is the lattice induced by the basis pa1, . . . , adq.
The length d of an inducing basis will be called the dimension of the lattice. Note that the dimension
is uniquely determined by a given lattice but that there might be several bases by which the lattice is
induced. The lattice Zd will be called the standard or cubic lattice in dimension d. It is induced by
the standard basis pe1, . . . , edq of Rd.

3.1.2 Let Λ be a lattice of dimension d, and denote by PfinpΛq the set of all finite subsets of Λ.
Fix a natural number N ě 1 and call N2 the spin degree of the spin lattice model we are going to
define. For each x P Λ let Hx be the N ` 1-dimensional complex Hilbert space CN`1. Now put for
O P PfinpΛq

HO “
â

xPO

Hx

and define the local algebra over O as the C˚-algebra

AO “ BpHOq .

Note that due to their finite dimensionality the tensor product of finitely many Hilbert spaces Hx

coincides here with their Hilbert tensor product. If O1 and O2 are two finite subsets of λ such that
O1 is a subset of O2, then one has the natural embedding

αO1,O2 : AO1 ãÑ AO2

which, under the natural identification AO –
Â

xPO

BpHxq, maps a tensor of the form bxPO1Ax with

Ax P BpHxq for all x P O1 to the simple tensor bxPO2Ax, where Ax is defined to be 1Hx whenever
x P O2zO1. In more abstract terms, αO1,O2 is the unique linear map making the diagram

commute where πO :
ś

xPOAx Ñ
Â

xPOAx is the canonical projection mapping the family pAxqxPO
to bxPOAx and αO1,O2 is the map

αO1,O2 :
ź

xPO1

Ax Ñ
â

xPO2

Ax, pAxqxPO1 ÞÑ pbxPO1Axq b pbxPO2zO1
1Hxq .
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II.4. Molecular quantum mechanics

4.1. The von Neumann–Wigner no-crossing rule

4.1.1 Theorem (von Neumann & Wigner (1929)) For any positive integer n let

Hermpnq “
 

A P glpn,Cq | A˚ “ A
(

be the space of all (complex) hermitian nˆ n matrices and

Sympnq “
 

A P glpn,Rq | At “ A
(

the space of all (real) symmetric n ˆ n matrices. Then Hermpnq and Sympnq are real vector space
of dimension n2 and npn`1q

2 , respectively. The subspaces Hermdgtpnq Ă Hermpnq and Symdgtpnq Ă
Sympnq of hermitian respectively symmetric nˆn matrices having at least one degenerate eigenvalue
are (real) algebraic varieties of codimension 3 and 2, respectively.

4.1.2 Remark Recall that an eigenvalue of a real or complex n ˆ n matrix is called degenerate if
its algebraic multiplicity is at least 2. For hermitian or symmetric matrices this is equivalent to the
geometric multiplicity of the eigenvalue being ě 2.

Proof. Since the diagonal elements of a hermitian matrix A “ paijq1ďi,jďn are all real and aij “ aji
for i ‰ j, the (real) dimension of Hermpnq is given as the sum of the number of diagonal elements
of A and twice the number of its upper diagonal elements. So one obtains

dimHermpnq “ n` 2
n´1
ÿ

k“1

k “ n` pn´ 1qn “ n2 .

In the real symmetric case, one needs to count the number of diagonal or upper diagonal elements,
hence

dimSympnq “
n
ÿ

k“1

k “
npn` 1q

2
.

The eigenvalues of a complex hermitian or real symmetric matrix A coincide with the zeros of its
characteristic polynomial χA “ detpA´ λInq P Crλs. Let DpχAq be the discriminant of the charac-
teristic polynomial; see (Cohen, 1993, Sec. 3.3.2) for the definition and properties of the discriminant.
Then DpχAq is a polynomial in the coefficients of χA and vanishes if and only if χA has a multiple
root. Since the coefficients of χA are polynomials in the entries of A, the set of hermitian (respec-
tively symmetric) nˆ n matrices with a degenerate eigenvalue is a real algebraic variety in Hermpnq
(respectively Sympnq).
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II.4. Molecular quantum mechanics 4.1. The von Neumann–Wigner no-crossing rule

Next let us determine the codimension of the variety Hermdgtpnq. To this end recall that a hermitian
matrix A can be written in the form A “ UDU´1, whereD is a diagonal matrix having the eigenvalues
of A as its entries and where U is a complex unitary n ˆ n matrix. The diagonal matrix D “

pdijq1ďi,jďn is uniquely determined when one requires that its diagonal entries are linearly ordered so
that d11 ď . . . ď dnn. The matrix U is uniquely up to a unitary matrix V commuting with D. In
case A has n different eigenvalues, the only unitary matrices commuting with D are diagonal matrices
with entries from Up1q. Since dim Upnq “ n2 Hence the codimension of Hermdgtpnq in Hermpnq is
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III.1. Representations of the Lorentz and
Poincaré groups

1.1. The Lorentz invariant measure on a mass hyperboloid

1.1.1 Consider Minkowski space of space dimension d that is R1`d endowed with the Minkowski inner
product

x¨, ¨yM : R1`d ˆ R1`d Ñ R, pp, qq ÞÑ ´p0q0 ` x~p, ~qy “ p0q0 ´

d
ÿ

i“1

piqi .

Note that x¨, ¨y stands here for the euclidean inner product, and ~p is the spacial vector pp1, . . . , pdq
associated to the space-time vector p P R1`d. We sometimes will denote space-time dimension 1` d
by D. For m ą 0 let

H`m “ tp P RD | xp, pyM “ m2 & p0 ą 0u

be the positive mass hyperboloid of mass m. Observe that

χ` : Rd Ñ H`m, p ÞÑ
`

Eppq, p
˘

with Eppq “
a

m2 ` xp, p y

is a global chart of the mass hyperboloid. Its inverse is given by

~ : H`m Ñ Rd, p “ pp0, p1, . . . , pdq ÞÑ ~p “ pp1, . . . , pdq .

Note that Ep~pq “ p0 for all p P H`m.

Now let λ denote Lebesgue measure on Rd. We will show that the pushforward measure Ωm “

χ`˚
`

1
Eλ

˘

is a Lorentz invariant measure on H`m that is Λ˚Ωm “ Ωm for all Λ P SOÒp1, dq. Note that
we have used here that Λ leaves H`m invariant.

1.1.2 Lemma For Λ P SOÒp1, dq let ΨΛ denote the map

ΨΛ : Rd Ñ Rd, p ÞÑ ΨΛppq “
ÝÝÝÝÝÑ
Λχ`ppq .

Then ΨΛ is a diffeomorphism and the following holds true:

(i) The map SOÒp1, dq Ñ DiffpRdq, Ψ : Λ ÞÑ ΨΛ is a homomorphism that is

ΨΛ1Λ2 “ ΨΛ1ΨΛ2 for all Λ1,Λ2 P SOÒp1, dq .

(ii) The jacobian of ΨΛ is given by

JΨΛ
“ |DΨΛ| “ det ˝DΨΛ “

E ˝ΨΛ

E
.
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III.1. Representations of the Lorentz and Poincaré groups 1.1. Lorentz-invariant measure

Proof. ad (i ). Let Λ1,Λ2 P SOÒp1, dq, p P Rd and compute

ΨΛ1ΨΛ2ppq “ ΨΛ1

´ÝÝÝÝÝÑ
Λ2χ

`ppq
¯

“
ÝÝÝÝÝÝÝÑ
Λ1Λ2χ

`ppq “ ΨΛ1Λ2ppq .

This implies in particular that ΨΛ is a diffeomorphism with inverse ΨΛ´1 .

ad (ii ). Assume first that Λ P SOÒp1, dq is a rotation that is Λ “
`

1 0
0 R

˘

for some R P SOpdq. Then
observe that ΨΛ “ R and compute for p P Rd

EpΨΛpq “ EpRpq “
a

m2 ` xRp, Rpy “
a

m2 ` xp, py “ Eppq .

Hence
det pDΨΛppqq “ 1 “

EpΨΛpq

Eppq
.

Next let Λ be a Lorentz boost in the direction of p1 that is let Λ “
´

cosh τ sinh τ 0
sinh τ cosh τ 0

0 0 1

¯

where τ P R and

1 denotes the identity matrix over Rd´1.

Then compute with ΨΛ,i for i “ 1, . . . , d denoting the i-th component of ΨΛ : Rd Ñ Rd:

ΨΛ,ippq “ Λi0Eppq `
d
ÿ

i“1

Λijp
j “

#

sinh τ ¨ Eppq ` cosh τ ¨ p1 for i “ 1,

pi for i “ 2, . . . , d,

BΨΛ,i

Bpj
ppq “

$

’

’

’

’

&

’

’

’

’

%

sinh τ ¨ p1

Eppq ` cosh τ for i “ j “ 1,

sinh τ ¨ pj

Eppq for i “ 1 and j “ 2, . . . , d,

0 for i “ 2, . . . , d and j “ 1,

δij for i, j “ 2, . . . , d,

and

E2pΨΛpq “ sinh2 τ ¨ E2ppq ` 2 sinh τ cosh τ ¨ Eppq ¨ p1 ` cosh2 τ ¨ pp1q2 `

d
ÿ

i“2

`

pi
˘2
`m2 “

“ psinh2 τ ` 1q ¨ E2ppq ` 2 sinh τ cosh τ ¨ Eppq ¨ p1 ` pcosh2 τ ´ 1q ¨ pp1q2 “

“
`

cosh τ ¨ Eppq ` sinh τ ¨ p1
˘2

.

This entails the equality

det pDΨΛppqq “ sinh τ ¨
p1

Eppq
` cosh τ “

EpΨΛpq

Eppq
.

Since SOÒp1, dq is generated by the rotations and Lorentz boosts in direction p1 and since by (i)

det pDΨΛ1Λ2ppqq “ det pDΨΛ1pΨΛ2pqq ¨ det pDΨΛ2ppqq

the claim follows.
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III.1. Representations of the Lorentz and Poincaré groups 1.1. Lorentz-invariant measure

1.1.3 Proposition With notation as above the pushforward measure Ωm “ χ`˚
`

1
ωλ

˘

is a Lorentz
invariant measure on the positive mass hyperboloid H`m that is

ż

H`m

fpΛpq dΩmppq “

ż

H`m

fppq dΩmppq (1.1.1)

for all f P L1pH`m,Ωmq and Λ P SOÒp1, dq.

Proof. By definition of the pushforward measure Ωm is the unique Borel measure on H`m such that
for all f P CcptpH`mq

ż

H`m

fppq dΩmppq “

ż

Rd
fpχ`pq

1

Eppq
dλppq .

The claim follows from this observation since for all Λ P SOÒp1, dq the equality
ż

Rd
fpΛχ`pq

1

Eppq
dλppq “

ż

Rd
fpχ`ΨΛpq

1

Eppq
dλppq “

“

ż

Rd
fpχ`ΨΛpq

1

EpΨΛpq
det pDΨΛppqq dλppq “

ż

Rd
fpχ`pq

1

Eppq
dλppq .

holds true by Lemma 1.1.2 (ii) .
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III.2. Axiomatic quantum field theory à la
Wightman and Gårding

2.1. Wightman axioms

2.1.1 The Wightman axioms were first introduced in the paper Wightman & Gårding (1964), and then
explained in more detail in the textbooks Jost (1965) and (Streater & Wightman, 2000, Sec. 3.1).
The latter is still the main reference for the axiomatic treatment of quantum field theory in the spirit
of Wightman and Gårding. See also (Schottenloher, 2008, Sec. 8.3) for a more modern formulation
which we follow here.

2.1.2 Definition A Wightman quantum field theory of space-time dimension D “ d` 1, d P Ną0,
consists of the following data:

• the state space of the theory given by the projective space PpHq associated to a separable
complex Hilbert space H,

• a distinguished state ω˝ “ Cv˝ P PpHq called the vacuum state together with the choice of a
normalized representing vector v˝ P H called vacuum vector,

• a unitary representation U :
Ă

PÒ`pd` 1q Ñ UpHq of the universal cover

Ă

PÒ`pd` 1q – Rd`1 ¸
ĄSOÒp1, dq

of the proper orthochronous Poincaré group PÒ`pd` 1q “ R1`d ¸ SOÒp1, dq,

• and finally a family pΦjq1ďjďn, n P Ną0, of so-called field operators

Φj : SpRd`1q Ñ LupHq

which are defined on the Schwartz space of rapidly decreasing functions on Rn and map to the
space of unbounded linear operators on the Hilbert space H.

These data are assumed to fulfill the following axioms, the so-called Wightman axioms:

(W1) (Assumptions about the domain and the continuity of the field)
There exists a dense linear subspace D Ă H containing v˝ such that D is contained in the
domain of all the operators Φjpfq and their adjoints Φjpfq˚, where f P SpRd`1q and j “
1, . . . , k. Moreover, the unitary representation U and the operators Φjpfq and Φjpfq˚ leave
D invariant that is

Upa,AqD Ă D, ΦjpfqD Ă D, Φjpfq˚D Ă D
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III.2. Axiomatic quantum field theory à la Wightman and Gårding 2.1. Wightman axioms

for all pa,Aq P Ă

PÒ`p1, dq, f P SpRd`1q and j “ 1, . . . , k. Finally, for every v P D, w P H and
j “ 1, . . . , n the maps

SpRd`1q Ñ C, f ÞÑ xw,Φjpfqvy

are tempered distributions.

(W2) (Transformation law of the field)

For all pa,Aq P Ă

PÒ`pd` 1q and all f P SpRd`1q the equation

Upa,AqΦjpfqUpa,Aq´1 “

n
ÿ

k“1

%jk
`

A´1
˘

Φkppa,Aqfq

is valid over the domain D, where % : ĄSOÒp1, dq Ñ GLpn,Cq is a finite dimensional representa-
tion of the universal cover of the proper orthochronous Lorentz group SOÒp1, dq and the action
of rPpd` 1q on SpRd`1q is given by

rPpd` 1q ˆ SpRd`1q Ñ SpRd`1q,
`

pa,Aq, f
˘

ÞÑ pa,Aqf “
´

Rd`1 Q x ÞÑ f
`

A´1px´ aq
˘

P C
¯

.

(W3) (Local commutativity or microscopic causality)
If the support of test functions f, g P SpRd`1q is space-like separated that is if fpxq gpyq “ 0
for all x, y P Rd`1 with xx´ y, x´ yyM ě 0, then for all j, k “ 1, . . . , n the relation

rΦjpfq,Φkpgqs´ “ rΦ
jpfq,Φjpgq˚s´ “ 0

or the relation
rΦjpfq,Φkpgqs` “ rΦ

jpfq,Φjpgq˚s` “ 0

holds true over the domain D. Hereby, rS, T s´ denotes the commutator

rS, T s´ : DÑ H, v ÞÑ STv ´ TSv

and rS, T s` the anti-commutator

rS, T s` : DÑ H, v ÞÑ STv ` TSv

of two operators S, T P LupHq which are both assumed to be defined on the domain D and
to leave it invariant.

(W4) (Cyclicity of the vacuum vector)
The linear span of the set of all elements v P H of the form

v “ Φj1pf1q . . . Φjmpfmqv˝ ,

where m P N, 1 ď j1, . . . , jm ď n, and f1, . . . , fm P SpRd`1q, is dense in H.

2.1.3 Remarks (a) The vacuum vector v˝ being normalized just means that }v˝} “ 1. This implies
that the vacuum state ω˝ determines v˝ only up to a factor z P S1 Ă C. The physically measur-
able quantities of the quantum field theory such as expectation values or transition amplitudes
do not depend on that choice.
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III.2. Axiomatic quantum field theory à la Wightman and Gårding 2.2. Fock space

(b) The field operators Φj are operator valued distributions. This reflects the fact that only the
“smeared” fields Φjpfq can be interpreted physically as observable. The notation Φjpxq for a field
evaluated at a space-time point x P R1,3 therefore does not make sense, neither mathematically
nor physically. Nevertheless it is often used for reasons of convenience, in particular in the physics
literature. The smeared field Φjpfq then is interpreted, again imprecisely, as the integral

Φjpfq “

ż

Rd`1

fpxqΦjpxq dx .

We will avoid the notation of pointwise evaluated fields in the formulation of definitions and
theorems, but occasionally use it as a heuristic.

For example, Axiom (W3) can heuristically be interpreted as saying that the (anti-) commutation
relations

rΦjpxq,Φkpyqs¯ “ rΦ
jpxq,Φjpyq˚s¯ “ 0

hold true for x, y P R1,d space-like separated which means for the situation when

xx´ y, x´ yyM ă 0 .

2.2. Fock space

2.2.1 Recall from Section A.3.4 that the Hilbert tensor product H1 pbH2 of two Hilbert spaces H1

and H2 is defined as the completion of the the algebraic tensor product H1 bH2 endowed with the
inner product

x¨, ¨y :
`

H1 bH2

˘

ˆ
`

H1 bH2

˘

Ñ K,
`

v1 b v2, w1 b w2

˘

ÞÑ xv1, w1y ¨ xv2, w2y .

The norm of an element v1bv2 P H1 pbH2 is then given by }v1bv2} “ }v1} ¨}v2}, and every element
v P H1 pbH2 can be written as the sum of a square summable family

`

vi1 b vi2
˘

iPI
that is as

v “
ÿ

iPI

vi1 b vi2 where }v}2 “
ÿ

iPI

}vi1}
2 ¨ }vi2}

2 ă 8 .

If peiqiPI is Hilbert basis for H1 and pfjqjPJ one of H2, the family peib fjqpi,jqPIˆJ is a Hilbert basis
of H1 pbH2. Moreover, the canonical map τ : H1 ˆH2 Ñ H1 pbH2, pv1, v2q ÞÑ v1 b v2 is bilinear
and weakly Hilbert–Schmidt that means that there exists a C ě 0 such that for all Hilbert bases
peiqiPI of H1, all Hilbert bases pfjqjPJ of H2, and all w P H1 pbH2

ÿ

pi,jqPIˆJ

|xτpei, fjq, wy|
2
ď C}w}2 .

Note that if this condition holds for one Hilbert basis of H1 and one of H2, it holds for all. The
Hilbert tensor product, which in the following we will only call tensor product, satisfies the following
universal property.
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(HTensor) For every Hilbert space H and every weakly Hilbert–Schmidt bilinear map µ : H1ˆH2 Ñ

H there exists a unique bounded linear map pµ : H1 pbH2 Ñ H such that the diagram

H1 ˆH2 H

H1 pbH2

τ

µ

pµ

commutes.

For a proof of the universal property see Section A.3.4 or (Kadison & Ringrose, 1997, Sec. 2.6.).
Note that by its universal property the Hilbert tensor product pb is a bifunctor on the category Hilb
of Hilbert spaces and bounded maps. Moreover, Hilb equipped with the bifunctor pb becomes a
monoidal category. See Section A.3.4 for details and proofs.

2.2.2 Now let us fix a Hilbert spaceH and consider the higher Hilbert tensor product powers FnpHq “
H

pb n for natural n. These are recursively defined by

H
pb 0 “ K, H

pb n`1 “ H pb
`

H
pb n

˘

.

The Fock space of H now is defined as the Hilbert space direct sum

FpHq “ x

à

nPN
FnpHq “ x

à

nPN
H

pb n .

Its elements are families pvnqnPN of vectors vn P H
pb n such that

ř

nPN }vn}
2 ă 8. The inner product

of two such families v “ pvnqnPN, w “ pwnqnPN P FpHq is given, according to ??, by

xv, wy “
ÿ

nPN
xvn, wny .

2.2.3 Remark The construction of the Fock space resembles the one of the tensor algebra. Recall
that the tensor algebra of H is the vector space TpHq “

À

nPN
TnpHq where TnpHq is defined as the

algebraic tensor product power Hbn. The completed tensor algebra of H now is the `1-completion

pTpHq “ `1-
x

à

nPN

pTnpHq ,

where pTnpHq “ FnpHq “ H
pb n. The completed tensor algebra lies densely in Fock space. To

verify this observe that, regarded in the category of Banach spaces, Fock space (including its norm)
coincides with the `2-direct sum of the spaces Banach spaces pTnpHq and pTpHq with their `1-direct
sum. Since for every summable family v “ pvnqPN with vn P pTnpHq the relation

}v} “ }v}2 “

d

ÿ

nPN
}vn}2 ď

d

ÿ

nPN
}vn} ¨

c

sup
nPN

}vn} ď
ÿ

nPN
}vn} “ }v}1

holds true by Hölders inequality for series, pTpHq is contained in FpHq. It is also dense in Fock space
because the (algebraic) direct sum

À

nPN
pTnpHq is already so.
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Unlike Fock space in the case dimH “ 8, the completed tensor algebra pTpHq always carries a
canonical algebra structure. To define the product of two summable families v “ pvnqnPN and
w “ pwnqnPN one puts for all natural n

zn “
n
ÿ

k“0

vk b wn´k .

Then zn P TnpHq for all n P N, and the family z “ pznqnPN is absolutely summable again since

ÿ

nPN
}zn} “ lim

NÑ8

N
ÿ

n“0

}zn} ď lim
NÑ8

N
ÿ

n“0

n
ÿ

k“0

}vk} }wn´k} ď lim
NÑ8

N
ÿ

k“0

N
ÿ

l“0

}vk} }wl} ď }v}1 }w}1 .

Hence z “ pznqnPN is an element pTpHq which we call the product of v and w. It will be denoted by
v b w. By the preceding estimate we thus obtain a continuous map

b : pTpHq ˆ pTpHq Ñ pTpHq, pv, wq ÞÑ v b w

such that
}v b w}1 ď }v}1 }w}1 for all v, w P pTpHq .

The restriction of b to the (uncompleted) tensor algebra TpHq “
À

nPN
TnpHq is associative, so by

density one concludes that b on pTpHq is associative as well. Hence pTpHq is a Banach algebra.

Even though FpHq might not possess a compatible Banach algebra structure, it carries the structure
of a pTpHq left and right module with the left and right actions being continuous. Let us show this for
the left module structure in some more detail. The right module case is analogous. So assume v “
pvnqnPN P pTpHq, w “ pwnqnPN P FpHq, and let z “ pznqnPN where as before zn “

řn
k“0 vk bwn´k.

Put wk “ 0 for k ă 0. Then compute using the triangle and Hölder’s inequality

}z}22 “ lim
NÑ8

N
ÿ

n“0

}zn}
2 “ lim

NÑ8

N
ÿ

n“0

›

›

›

›

›

n
ÿ

k“0

vk b wn´k

›

›

›

›

›

2

ď

ď lim
NÑ8

N
ÿ

n“0

˜

N
ÿ

k“0

´

}vk}
1{2 }wn´k}

¯

}vk}
1{2

¸2

ď

ď lim
NÑ8

N
ÿ

n“0

˜

N
ÿ

k“0

}vk} }wn´k}
2

¸ ˜

N
ÿ

k“0

}vk}

¸

ď

ď lim
NÑ8

}v}1

N
ÿ

k“0

˜

}vk}
N
ÿ

n“0

}wn´k}
2

¸

ď

ď lim
NÑ8

}v}1

N
ÿ

k“0

˜

}vk}
N
ÿ

n“0

}wn}
2

¸

“ }v}21 }w}
2
2 .

Hence z P FpHq, and the product b : pTpHq ˆ pTpHq Ñ pTpHq has a unique continuous extension to
a left action

b : pTpHq ˆ FpHq Ñ FpHq, pv, wq ÞÑ v b w

such that
}v b w}2 ď }v}1 }w}2 for all v P pTpHq, w P FpHq .
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2.2.4 Next we will show that associating to a Hilbert space its Fock space can be extended to a
functor on the category Hilb1 of Hilbert spaces and linear contractions between them. Recall that
by a linear contraction one understands a bounded linear operator with norm ď 1. So assume that
A : H1 Ñ H2 is a contraction between Hilbert spaces H1 and H2. By functoriality of the algebraic
tensor product one obtains for each n P Ną0 a linear map

Abn : Hbn
1 Ñ Hbn

2 , v1 b . . .b vn ÞÑ Av1 b . . .bAvn .

By Proposition 3.4.5 or (Kadison & Ringrose, 1997, Prop. 2.6.12 & Eq. 2.6.(16)) this operator has
norm }A}n and extends uniquely to a bounded linear operator FnpAq : FnpH1q Ñ FnpH2q having
the same norm. Since by assumption }A} ď 1, one concludes that }FnpAq} ď 1 for all n P Ną0. One
further puts F0pAq “ idK and observes that then supnPN }F

npAq} “ 1. Hence, by construction of
the operators FnpAq and definition of the Hilbert direct sum the map

FpAq : FpH1q Ñ FpH2q, v “ pvnqnPN ÞÑ pFnpAqpvnqqnPN

is well-defined and a bounded linear operator of norm 1. Note that hereby we have again used the
(silent) agreement that v “ pvnqnPN denotes a square-integrable family with vn P FnpH1q for all
n P N. By construction it is immediate that FpidHq “ idFpHq for every Hilbert space H and that for
linear contractions A : H1 Ñ H2 and B : H2 Ñ H3 between Hilbert spaces the relation

FpBAq “ FpBqFpAq

holds true. Hence we obtain as promised a (covariant) functor F from the category Hilb to itself.
One sometimes calls F the functor of second quantization.

2.2.5 Particularly important for quantum field theory is the observation going back to Cook (1953)
that every closed densely defined linear operator on a Hilbert space has an extension to Fock space
which again is closed and densely defined. Let us explain this in some more detail. We essentially
follow the approach by Cook (1953); see also Emch (2009).

Let pHqni“1 be a finite family of Hilbert spaces and pAiqni“1 a family of closed densely defined un-
bounded linear operators Ai : DompAiq Ă Hi Ñ Hi, i “ 1, . . . , n over the same index set. Hence
the adjoint A˚i of Ai is a closed densely defined unbounded linear operator on Hi for every index
i “ 1, . . . , n. Put Di “ DompAiq and D˚i “ DompA˚i q and note that then Di and D˚i are dense in
Hi by assumption and the preceding observation.

2.3. The free scalar field

2.3.1 Here we want to show that a model of the Wightman axioms is given by the free scalar field of
mass m ą 0 in space-time dimension D “ d` 1 for d P Ną0. The Hilbert space H of the free scalar
field is the symmetric Fock space Fs

`

L2pH`m,Ωmq
˘

over the 1-particle Hilbert space L2pH`m,Ωmq of
square-integrable functions on the positive mass hyperboloid H`m Ă RD equipped with the lorentz-
invariant measure Ωm which has been defined in Section 1.1. By definition, Ωm coincides with the
pushforward measure χ`˚ p

1
Eλq, where λ denotes Lebesgue measure on Rd, Eppq “

a

m2 ` xp, py for
all p P Rd, and χ` : Rd Ñ H`m is the chart of the positive mass hyperpoloid which maps p P Rd to
`

Eppq, p
˘

P H`m. In this section we will often denote the 1-particle Hilbert space of the free scalar
field by Hp1q.
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III.3. Algebraic quantum field theory à la
Haag–Kastler

3.1. The Haag–Kastler axioms
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A.1. Topological Vector Spaces

A.1.1. Topological division rings and fields

1.1.1 Vector spaces with a compatible topology can not only defined for vector spaces over the ground
fields R and C but also over fields K carrying an absolute value | ¨ | : K Ñ Rě0. This endows the
ground field with a topology which will be needed in the definition of a topological vector space. We
therefore give here a brief introduction to topological division rings and fields first.

1.1.2 Definition Let R be a division ring. By an absolute value on R one understands a map
| ¨ | : RÑ Rě0 such that the following axioms hold true.

(VDR1) The function | ¨ | is multiplicative that is

|xy| “ |x| |y| for all x, y P R .

(VDR2) The triangle inequality is satisfied which means that

|x` y| ď |x| ` |y| for all x, y P R .

(VDR3) For all x P R the relation |x| “ 0 holds true if and only if x “ 0.

A division ring or field endowed with an absolute value is called a valued division ring respectively a
valued field. An absolute value | ¨ | on a division ring R and the corresponding valued division ring
pR, | ¨ |q are called non-archimedean if the strong triangle inequality is satisfied that is if

(VDR4) |x` y| ď maxt|x|, |y|u for all x, y P R.

Otherwise | ¨ | and pR, | ¨ |q are called archimedean.

1.1.3 Lemma Let pR, | ¨ |q be a valued division ring. Then

(i) |1| “ 1,

(ii) | ´ x| “ |x| for all x P R, and

(iii)
ˇ

ˇ|x| ´ |y|
ˇ

ˇ ď |x´ y| ď |x| ` |y| for all x, y P R.

Proof. (i) holds true since |1| “ |12| “ |1|2 and |1| ‰ 0 by 1 ‰ 0. To verify (ii) it suffices to show
that |´1| “ 1. But that holds true since |´1|2 “ |p´1q2| “ 1 and |´1| ě 0. The last claim follows
by

´|x´ y| “ |x| ´ p|y ´ x| ` |x|q ď |x| ´ |y| ď |x´ y| ` |y| ´ |y| “ |x´ y|

and
|x´ y| “ |x` p´yq| ď |x| ` | ´ y| “ |x| ` |y| .
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1.1.4 Examples (a) Obviously, the standard absolute values

| ¨ |8 : Q,RÑ Rě0, x ÞÑ

#

x if x ě 0

´x if x ă 0
and | ¨ |8 : CÑ Rě0, z ÞÑ

?
zz

are absolute values on the fields Q, R and C, respectively. These absolute values are all archimedean
since |1` 1|8 “ 2 ą 1. Unless mentioned differently, we always assume Q, R and C to be equipped
with the standard absolute values. If no confusion can arise we usually write | ¨ | instead of | ¨ |8.

(b) The standard absolute value on the quaternions

| ¨ |8 : HÑ Rě0, q “ a` b i` c j` d k ÞÑ
a

qq “
a

a2 ` b2 ` c2 ` d2 ,

where a, b, c, d are real, is an archimedean absolute value. Usually it is briefly denoted | ¨ |.

(c) For every division ring R the map

| ¨ | : RÑ R, x ÞÑ

#

0 if x “ 0,

1 else

is a non-archimedean absolute value. It is called the trivial absolute value on R.

(d) An absolute value | ¨ | : FÑ Rě0 defined on a finite field F has to be trivial. To see this observe
that for each x P Kˆ there exists an n P N such that xn “ 1. This entails |x|n “ 1, hence |x| “ 1
for all x P Kˆ. So | ¨ | is trivial.

(e) The field of formal Laurent power series KppXqq over a field K can be equipped with an absolute
value as follows. Choose 0 ă ε ă 1 and define the absolute value

ˇ

ˇ

ř

kPZ akX
k
ˇ

ˇ of an element
ř

nPZ anX
n P KppXqq as εn, where n is the minimal integer such that an ‰ 0.

(f) Let p be prime number. For every integer m ‰ 0 let νppmq be the exponent of p in the prime
factor decomposition of m that is m “ pνppnqn where n is relatively prime to p. For m P Z and
n P Ną0 one defines the p-adic absolute value of the rational number x “ m

n by

|x|p “

#

0 if m “ 0 ,

p´νppmq`νppnq else .

Note that |x|p does not depend on the particular representation of x as the quotient of integers m
and n. By definition it is immediately clear that the p-adic absolute value is an absolute value on Q
indeed. It is non-archimedean.

1.1.5 Proposition A valued division ring pR, | ¨ |q is non-archimedean if and only if the image of Z
under the canonical map ZÑ R is bounded.

Proof. Assume that pR, | ¨ |q is a non-archimedean valued division ring. Then, |0 ¨ 1| “ |0| “ 0
and, under the assumption that |pn ´ 1q ¨ 1| ď 1 for some n P Ną0, |n ¨ 1| “ |pn ´ 1q ¨ 1 ` 1| “
maxt|pn´ 1q ¨ 1|, 1u “ 1. Hence by induction and since | ´ 1| “ 1 one obtains that |n ¨ 1| ď 1 for all
n P Z, and the image of Z in R is bounded.
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To show the converse assume that the image of Z in R is bounded by some constant C ą 0. Then,
for all x, y P R and n P Ną0 by the binomial formula and the triangle inequality

|x` y|n “

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“0

ˆ

n

k

˙

xkyn´k

ˇ

ˇ

ˇ

ˇ

ˇ

ď pn` 1qC maxt|x|, |y|un .

Taking the n-th root gives |x ` y| ď
`

pn ` 1qC
˘1{n

maxt|x|, |y|u which after passing to the limit

n Ñ 8 entails |x ` y| ď maxt|x|, |y|u since lim
nÑ8

`

pn ` 1qC
˘1{n

“ 1. Hence pR, | ¨ |q is non-
archimedean.

1.1.6 Proposition Let | ¨ | be an absolute value on the division ring R. Then for every τ ą 0 with
τ ď 1 the map | ¨ |τ : RÑ Rě0 is an absolute value on R as well. It is archimedean if and only if | ¨ |
is archimedean.

Proof. To prove that | ¨ |τ is an absolute value it suffices to show that pa ` bqτ ď aτ ` bτ for all
a, b ě 0. Without loss of generality we may assume a ě b ą 0. By dividing through bτ one sees that
the claim is equivalent to pt`1qτ ď tτ`1 for all t ě 1. For t “ 1 this is certainly true. The derivative
of the function h : r1,8 Ñ R, t ÞÑ pt` 1qτ ´ tτ now is given by h1ptq “ τ

`

pt` 1qτ´1´ tτ´1
˘

which
is negative since τ ´ 1 ď 0 and 1` t ą t ě 1. Hence h is monotone decreasing and pt` 1qτ ´ tτ ď 1
for all t ě 1.

Since 0,8 Ñ R, t ÞÑ tτ is strictly increasing and unbounded, the image of Z in R is unbounded
with respect to | ¨ | if and only if it is with respect to | ¨ |τ .

1.1.7 An absolute value | ¨ | : R Ñ Rě0 on a division ring R induces the metric d : R ˆ R Ñ Rě0,
px, yq ÞÑ |x´y| which then gives rise to a topology on R. This topology has the following properties:

(TDR1) Addition ` : RˆRÑ R is continuous.

(TDR2) Multiplication ¨ : RˆRÑ R is continuous.

(TDR3) Inversion p ¨ q´1 : Rˆ Ñ Rˆ is continuous, where Rˆ denotes the set of units in R
i.e. Rˆ “ Rzt0u.

Proof. Addition is continuous since for all a, b, x, y P R by the triangle inequality

dpx` y, a` bq “ |x` y ´ pa` bq| ď |x´ a| ` |y ´ b| “ dpx, aq ` dpy, bq .

Actually, this even shows that addition is Lipschitz continuous. Now fix a, b P R and let C “

maxt|a|, |b|u ` 1. Then for all x, y P R with dpy, bq ă 1

dpx ¨ y, a ¨ bq “ |px ¨ y ´ a ¨ yq ` pa ¨ y ´ a ¨ bq| ď |x´ a| |y| ` |a| |y ´ b| ď C
`

dpx, aq ` dpy, bq
˘

.

Hence multiplication is continuous. Finally, fix a P Rˆ and let x P Rˆ with dpx, aq ă |a|
2 . Then

|x| ě |a| ´ dpx, aq ą |a|
2 ą 0 and

d
`

x´1, a´1
˘

“
ˇ

ˇx´1 ´ a´1
ˇ

ˇ “
ˇ

ˇx´1 ¨ a´1
ˇ

ˇ |x´ a| “
1

|x| |a|
dpx, aq ă

2

|a|2
dpx, aq .

So inversion is also continuous.
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1.1.8 Definition A division ring or fieldR which is equipped with a topology so that (TDR1), (TDR2)
and (TDR3) are satisfied is called a topological division ring or a topological field, respectively.

1.1.9 Lemma If | ¨ | is a non-trivial absolute value on the division ring R, then there exists an element
t P Rˆ such that the sequence ptnqnPN converges to 0. Furthermore in this case every 0-neighborhood
in R contains infinitely many elements.

Proof. By non-triviality of | ¨ | there exists t P Rˆ such that |t| ‰ 1. By possibly passing to t´1 we
can assume |t| ă 1. Since then lim

nÑ8
|t|n “ 0, the sequence ptnqnPN converges to 0. This implies

in particular that for every ε ą 0 the open ball Bp0, εq “ tt P R | |t| ă εu contains infinitely many
elements. So the lemma is proved.

1.1.10 Definition Two absolute values | ¨ | and | ¨ |1 on a division ring R are called equivalent if they
induce the same topology on R.

1.1.11 Theorem Let | ¨ | and | ¨ |1 be two absolute values on the division ring R. Then they are
equivalent if and only if there exists e ą 0 such that | ¨ |1 “ | ¨ |τ . In particular the trivial absolute
value is the only one inducing the discrete topology on R.

Proof. Let us first show the following proposition.

(A) If | ¨ | and | ¨ |1 are equivalent, then the relation |x| ă 1 holds true for x P Rˆ if and only if
|x|1 ă 1.

Since
ˇ

ˇx´1
ˇ

ˇ “ 1
|x| and

ˇ

ˇx´1
ˇ

ˇ

1
“ 1

|x|1 for all x P R
ˆ, (A) implies that |x| ą 1 if and only if |x|1 ą 1

and that |x| “ 1 if and only if |x|1 “ 1. To verify claim (A) assume now that 0 ă |x| ă 1. Then
lim
nÑ8

|xn| “ 0, hence pxnqnPN converges to 0. By assumption, lim
nÑ8

|xn|1 “ 0 then holds as well which

implies that |x|1 ă 1. By switching | ¨ | and | ¨ |1 the converse holds true, so (A) is proved.

Next we show that | ¨ | is trivial if and only if the induced topology on R is discrete. Namely, if | ¨ | is
non-trivial, then there exists x P Rˆ such that |x| ‰ 1. After possibly passing to 1

x we can achieve
that |x| ă 1. So lim

nÑ8
|xn| “ 0, which means that pxnqnPN is a sequence of non-zero elements of

R converging to 0. But this implies that the singleton t0u is not open in the topology induced by
| ¨ |, hence this topology is non-discrete. Since obviously the trivial absolute value induces the discrete
topology on R the second claim of the theorem is proved.

Now assume that | ¨ |1 “ | ¨ |τ for some τ ą 0. Then a subset B Ă R is a metric open ball with
respect to | ¨ | if and only if it is one with respect to | ¨ |1 since for x P R and ε ą 0

 

y P R
ˇ

ˇ |y ´ x| ă ε
(

“
 

y P R
ˇ

ˇ |y ´ x|1 ă ετ
(

and
 

y P R
ˇ

ˇ |y ´ x|1 ă ε
(

“
 

y P R
ˇ

ˇ |y ´ x| ă ε1{τ
(

.

Hence the open sets with respect to the metric defined by | ¨ | coincide with those defined by | ¨ |1 and
the two absolute values are equivalent.

Let us finally show the other direction and assume that | ¨ | and | ¨ |1 are equivalent. By the already
proven second claim of the theorem we can restrict to the case where the induced topology is non-
discrete which means to the case where both | ¨ | and | ¨ |1 are non-trivial. We show that there exists
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τ ą 0 such that |x|1 “ |x|τ for all x P Rˆ with |x| ą 1. This is sufficient, since if |x| “ 1, then
|x|1 “ 1 “ |x|σ for any σ ą 0 by (A), and since if x P Rˆ with |x| ă 1 then |x´1| ą 1 and

|x|1 “
1

|x´1|
1 “

1

|x´1|
τ “ |x|

τ .

The existence of a τ ą 0 with the claimed property is equivalent to the function

Rˆ Ñ R, x ÞÑ
ln |x|1

ln |x|

being constant. Assume that that is not the case. Then there exist x, y P Rˆ with |x|, |y| ą 1 such
that ln |x|1

ln |x| ‰
ln |y|1

ln |y| . By possibly switching x and y we can assume ln |x|1

ln |x| ă
ln |y|1

ln |y| . But that implies
ln |x|1

ln |y|1 ă
ln |x|
ln |y| since the logarithms are positive by assumptions on x and y and (A). Hence there exists

a rational number p
q with p, q P Ną0 such that

ln |x|1

ln |y|1
ă
p

q
ă

ln |x|

ln |y|
.

Then |xq|1 ă |yp|1 and |yp| ă |xq| which entails
ˇ

ˇ

ˇ

ˇ

xq

yp

ˇ

ˇ

ˇ

ˇ

1

ă 1 and
ˇ

ˇ

ˇ

ˇ

xq

yp

ˇ

ˇ

ˇ

ˇ

ą 1 .

This contradicts (A) and the theorem is proved.

1.1.12 Remarks (a) By Ostrowski’s theorem (Ostrowski, 1916, p. 276), see also (Gouvêa, 1997,
Thm. 3.1.3), every non-trivial absolute value on the field Q of rational numbers is either equivalent
to the standard absolute value | ¨ |8 or to a p-adic absolute value | ¨ |p for some prime number p.
Observe that for different primes p and q the absolute values | ¨ |p and | ¨ |q are not equivalent.

(b) Another theorem of Ostrowski (Ostrowski, 1916, p. 284), sometimes called big Ostrowski’s theo-
rem, tells that for every archimedean valued field pK, | ¨ |q there exists an embedding ι : K ãÑ C into
the field of complex numbers with its standard absolute value and a positive real number τ ď 1 such
that

|x| “ |ιpxq|τ8 for all x P K .

In particular this means that every complete archimedean valued field is isomorphic to either pR, | ¨ |τ8q
or pC, | ¨ |τ8q for some positive τ ď 1.

(c) The p-adic absolute values on Q have extensions to R by (Lang, 2002, XII, §4, Thm. 4.1).
This is a highly non-obvious result. To prove it one has to check first that | ¨ |p can be extended
to an absolute value | ¨ | on the field k of real numbers algebraic over Q. This extended absolute
value is, and that turns out to be crucial, again non-archimedean. Now one observes that | ¨ |
can be extended to the polynomial ring krXs by the Gauß norm |ppXq| “ max0ďiďntaiu where
ppXq “ anX

n ` . . . ` a1X ` a0 P krXs. The Gauß norm obviously extends to an absolute value
on the fraction field kpXq. Again, this extension is non-archimedean. Now one recalls that R is a
purely transcendental field extension of k and uses a transfinite induction type argument involving the
just constructed Gauß norm to extend | ¨ | from K to R. The thus obtained extension of the p-adic
absolute value to R is not unique. In its construction, the axiom of choice is used, so one can not
even give an explicit formula for such an extension.
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A.1.2. The category of topological vector spaces

Vector space topologies

1.2.1 Definition Let R be a topological division ring. A topology T on a vector space E over R is
called a vector space topology if the following axioms hold true:

(TVS1) Addition ` : Eˆ E Ñ E is continuous.

(TVS2) Multiplication by scalars ¨ : Rˆ E Ñ E is continuous.

The topology T on E is called translation invariant if for every w P E the linear map `w : E Ñ E,
v ÞÑ v ` w is a homeomorphism.

A vector space E endowed with a vector space topology on it is called a topological vector space
(over R), for short a tvs

1.2.2 Remark Let us recall at this point some notation from linear algebra. Assume that V is a left
vector space over the divison ring R. If A,B Ă V are two non-empty subsets, then A ` B is the
set of all v P V for which there exist x P A and y P B such that v “ x ` y. If A or B is empty,
then A ` B is defined as the empty set. In case A is a singleton that is if A “ txu, then we often
write x`B instead of txu `B. If B Ă PpVq is a non-empty set of subsets of V, then we denote by
A ` B and x ` B the sets tA ` B P PpVq | B P Bu and tx ` B P PpVq | B P Bu, respectively. If
A Ă PpVq is a second non-empty set of subsets of V, then A`B stands for the set of all sets of the
form A`B, where A P A and B P B.

In case C is a subset of the ground ring R, then C ¨ A is defined as the set of all v P V for which
there exist r P C and x P A such that v “ r ¨x. If r P R we write r ¨A for tru ¨A. Likewise, if x P V,
C ¨ x stands for C ¨ txu. Analogously as for addition the sets C ¨A, C ¨A and C ¨A are defined when
C Ă PpRq and A Ă PpVq are non-empty.

1.2.3 Proposition Let E be a tvs over a topological division ring R. Then the following holds true:

(i) For every r P Rˆ and w P E the homothety `r,w : E Ñ E, v ÞÑ rv ` w is a homeomorphism
with inverse `r´1,´r´1w.

(ii) Let w be an element of E and r P Rˆ. A filter base B on E then is a filter base for the zero
neighborhoods if and only if w ` rB is a filter base for the neighborhoods of w.

(iii) If B is a filter base of the filter of zero neighborhoods, then the closure of any non-empty A Ă E
is given by

sA “
č

UPB

A` U .

(iv) Let A Ă E be open and B Ă E. Then the set A`B is open.

(v) Let A,B Ă E be closed and assume that A is quasi-compact that is that any filter on A has a
cluster point. Then the set A`B is closed.

(vi) The space E is ?? or, equivalently, each point of E possesses a neighborhood base consisting of
closed subsets.
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Proof. ad (i ). The homothety `r,w is continuous since addition and multiplication by a scalar are
continuous maps on a tvs Since for all v P V

`r´1,´r´1w ˝ `r,wpvq “ r´1prv ` wq ´ r´1w “ v, and

`r,w ˝ `r´1,´r´1wpvq “ rpr´1v ´ r´1wq ` w “ v

the homothety `r,w is invertible, and its inverse is `r´1,´r´1w.

ad (ii ). This follows since `r,w is a homeomorphism.

ad (iii ). Let B “
Ş

UPB

A ` U . Let v be an element of the closure of A. Then, for U P B, there

exists an element a P A X v ´ U by (ii) and since ´U is a zero neighborhood. Hence v P a ` U ,
and sA Ă B follows. Now let v P B and V be a neighborhood of v. Then there exists U P B such
that v ´ U Ă V . By definition of B there exists an element a P A such that v P a ` U . Hence
a P v ´ U Ă V which implies that v P sA. So B Ă sA.

ad (iv ). The set A`B is either empty or coincides with the union
Ť

vPB v ` A. In the latter case,
each of the sets v`A is non-empty and open by continuity of addition. So A`B is open under the
assumptions made.

ad (v ). We can assume that A and B are non-empty because the claim is trivial otherwise. Assume
that A`B is not closed. Then there exists an element v P EzpA`Bq such that each neighborhood
of v meets A ` B. This means in particular that the restriction of the neighborhood filter U of v
to A ` B is a filter base. Consequently, p´B ` Uq X A is a filter base on A, hence possesses an
accummulation point x P A. For each neighborhood V P U the point x is then contained in the
closure of ´B ` V . Hence, by (iii), x is contained in v ´ B ` U ` U for every zero neighborhood
U . Since by continuity of addition U ` U runs through a base of zero neighborhoods when U runs
through the zero neighborhoods, x P v ´ sB “ v ´ B follows. Since x P A this contradicts the
assumption v P A`B and A`B has to be closed.

ad (vi ). Let v P E, A Ă E closed, and assume v R A. Choose an open neighborhood V of v such
that V X A “ H. Then there exists an open zero neighborhood U such that v ` U ` U Ă V . By
possibly passing to U X p´Uq we can assume that U “ ´U . Now v`U is an open neighborhood of
v and A` U one of A. These neighborhoods are disjoint because if the intersection v ` U XA` U
is non-empty, then there exists an element w P v ` U ` U X A since ´U “ U . This contradicts
V X A “ H, so v ` U and A ` U are disjoint neighborhoods of v and A, respectively. Hence E
satisfies ??.

1.2.4 Corollary Every vector space topology on a vector space over a topological division ring is
translation invariant.

Proof. This follows immediately by Proposition 1.2.3 (i).

1.2.5 Definition A subset C of a vector space E over a valued division ring pR, | ¨ |q is called

(i) symmetric if ´v P C for all v P C,

(ii) circled or balanced if rv P C for all v P C and r P R with |r| ď 1.
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1.2.6 Remark Symmetry of a subset of a vector space of a division ring is even defined when the
underlying division ring does not carry an absolute value.

1.2.7 Lemma Let C be a subset of a topological vector space E over a valued division ring pR, | ¨ |q
and r P R.

(i) If C is symmetric, then the closure sC and the interior C̊ are symmetric.

(ii) If C is circled, then the closure sC and the union C̊ Y t0u are circled.

(iii) The set rC is symmetric (respectively circled) if C has that property.

Proof. Without loss of generality we can assume C ‰ H. Claim (i) then follows immediately since
multiplication by ´1 is a homeomorphism. To prove claim (ii) assume that C is circled. Let s P R with
|s| ď 1. Assume v P sC and consider sv. We have to show that sv P sC. If s “ 0 then sv “ 0 P C Ă sC
since C is circled. So we can assume s ‰ 0 and need to show that for every neighborhood V of
sv the intersection C X V is non-empty. Since |s| ą 0, the homothety `s : E Ñ E, w ÞÑ sw is a
homeomorphism with inverse `s´1 . Hence s´1V is a neighborhood of v. Since v lies in the closure of
C there exists an element w P C X s´1V . Hence sw P C X V by assumption on C and sC is circled.

If v P C̊ Y t0u then 0 “ 0 ¨ v P C̊ Y t0u. It remains to show that sv P C̊ Y t0u for s P R with
0 ă |s| ď 1 and v P C̊zt0u. Under this assumption the homothety `s is a homeomorphism, so sC̊ is
an open subset of C since C is circled. Hence sv P sC̊ Ă C̊, and C̊ Y t0u is circled as well.

Claim (iii) follows immediately from the observation that for v P C and s P R the relation srv P rC
holds true if sv P C.

1.2.8 Proposition and Definition The intersection of a non-empty family pCiqiPI of symmetric
(respectively circled) subsets Ci Ă E, i P I of a topological vector space E over a valued division ring
pR, | ¨ |q is symmetric (respectively circled). In particular, if A Ă E is a subset, then the sets

SymA “
č

AĂBĂE
B is symmetric

B and CircA “
č

AĂBĂE
B is circled

B

are symmetric and circled, respectively. They have the property that SymA is the smallest symmetric
and CircA the smallest circled subsets of E containing A. They are called the symmetric and the
circled hull of A, respectively. Analogously,

ĘSymA “
č

AĂB“ sBĂE
B is symmetric

B and CircA “
č

AĂB“ sBĂE
B is circled

B

are called the closed symmetric and the closed circled hull of A, respectively. They have the property
that ĘSymA is the smallest closed symmetric and CircA the smallest closed circled subset of E
containing A.

Proof. Note first that all the hulls in the proposition are well-defined since E is closed and circled.
Let C denote the intersection of the family pCiqiPI . Assume that for some r P R with |r| ď 1 the
inclusion rCi Ă C holds true for all i P I. Then rC Ă C, hence if all Ci are symmetric (respectively
circled), so is C. This observation now entails that SymA is symmetric, Circ is circled, ĘSymA is
closed and symmetric, and finally that CircA is closed and circled. Moreover, all those sets contain
A. The minimality properties of these sets are clear by construction.
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1.2.9 Remark Observe that by the proposition A is symmetric if and only if SymA “ A and circled
if and only if CircA “ A. Analogously, ĘSymA “ A if and only if A is closed symmetric and
CircA “ A if and only if A is closed and circled.

1.2.10 Lemma Let E be a topological vector space over the valued division ring pR, | ¨ |q and A Ă E
non-empty. Then

SymA “ AY´A and CircA “
ď

rPR, |r|ď1

rA .

For the closed hulls one has

ĘSymA “ SymA and CircA “ CircA .

Proof. Since AY´A is symmetric by definition, contains A, and is contained in SymA, the equality
SymA “ A Y ´A holds true. Similarly,

Ť

rPR, |r|ď1 rA is circled by definition, contains A, and is
contained in CircA by definition of the circled hull. Hence CircA “

Ť

rPR, |r|ď1 rA. The remainder
of the claim follows from Lemma 1.2.7.

1.2.11 Definition Assume that B,C are subsets of a vector space E over the valued division ring
pR, | ¨ |q. Then one says that

(i) C absorbes B if there exists a real number t P Rě0 such that B Ă rC for all r P R with |r| ě t,

(ii) C is absorbing or absorbent if C absorbes every one-point set of E that is if for every v P E
there exists t P Rě0 such that v P rC for all r P R with |r| ě t.

If the vector space E carries in addition a vector space topology, then one says that

(iii) the subset B Ă E is bounded if it is absorbed by every zero neighborhood.

1.2.12 Lemma Let E be a vector space over the valued division ring pR, | ¨ |q. Then the following
holds true.

(i) If C1, . . . , Cn are absorbing subset of E, then the intersection C1 X . . .X Cn is absorbing.

(ii) If C is an absorbing subset of E, then rC is absorbing for every r P Rˆ.

Proof. ad (i ). Let v P E and choose t1, . . . , tn P Rě0 such that v P rCi for |r| ě ti. Put t “
maxtt1, . . . , tnu. Then v P rpC1 X . . .X Cnq for |r| ě t, hence C1 X . . .X Cn is absorbing.

ad (ii ). Choose t P Rě0 such that v P sC for all s P R with |s| ě t. Then one has |sr| ě t for all
s P R with |s| ě t

|r| , hence v P sprCq for all such s. Therefore rC is absorbing.

1.2.13 Proposition The filter of zero neighborhoods of a topological vector space E over pR, | ¨ |q
has a filter base B with the following properties:

(i) For each V P B there exists U P B such that U ` U Ă V .

(ii) Every element V P B is circled and absorbing.

(iii) There exists an element r P Rˆ with 0 ă |r| ă 1 such that V P B implies rV P B.
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Conversely, if B is a filter base on an R-vector space E such that (i) to (iii) hold true, then there
exists a unique vector space topology on E such that B is a neighborhood base at the origin. In case
the ground ring R is archimedean, a filter base on E which satisfies (i) and (ii) already induces a
unique vector space topology having B as a neighborhood base at 0. In either of these two cases, the
thus constructed topology coincides with the coarsest translation invariant topology for which B is a
set of zero neighborhoods.

Proof. Assume that E is a tvs Let B be the set of circled neighborhoods of 0. We show first that
B is a base of the filter U0 of zero neighborhoods. Let W P U0. By Axiom (TVS2) there exists
an ε ą 0 and an open zero neighborhood U such that sU Ă W for all s P R with |s| ă ε. Then
V “

Ť

sPRˆ & |s|ăε

sU is a zero neighborhood since by Lemma 1.1.9 the set of s P Rˆ with |s| ă ε is

non-empty. By construction V is contained in W and circled, so V P B. Hence B is a filter base of
U0.

Next recall that there exists r P Rˆ with 0 ă |r| ă 1 since the absolute value | ¨ | is non-trivial. Let
V P B. Then sV Ă V for all s P R with |s| ď 1 which entails srV Ă rV for all such s. Hence rV is
circled and an element of B as well. This proves (iii). Since addition on E is continuous, there exist
for given V P B open neighborhoods U1, U2 of the origin such that U1 ` U2 Ă V . Choose U P B

such that U Ă U1 X U2. Then U ` U Ă V and (i) is proved. To show that any V P B is absorbing
let v P E. By continuity of scalar multiplication there exists ε ą 0 such that sv P V for all s P R with
|s| ă ε. By Proposition 1.2.3 (i) this entails v P sV for all s P R with |s| ą ε and V is absorbing.

Now assume that E is an R-vector space and that B is a filter base that satisfies (i), (ii) and, if
| ¨ | is non-archimedean, (iii). Since B consists of non-empty circled sets, 0 P V for all V P B. Let
T Ă PpEq be the set of all U Ă E such that for each v P U there exists V P B with v ` V Ă U . By
definition and since B is a filter base, T is a topology on E. By construction, T is also the coarsest
translation invariant topology for which B is a set of zero neighborhoods. We show that B is a base
of the filter U0 of zero neighborhoods. By definition of T there exists for each U P U0 a V P B such
that V Ă U . So it remains to show that each V P B is a zero neighborhood. To this end let U be the
set of all v P V for which there exists a W P B with v `W Ă V . Since 0` V Ă V one has 0 P U .
The relation U Ă V holds because 0 PW for all W P B. Now let v P U . By (i) there exists W 1 such
that v `W 1 `W 1 Ă V which entails v `W 1 Ă U . Hence U P T and V is a zero neighborhood.
Next we verify that T is a vector space topology. We start with continuity of addition. Let W be an
open neighborhood of v ` w, where v, w P E. Then there exists V P B such that v ` w ` V Ă W .
Choose U P B such that U ` U Ă V . Then v ` U and w ` U are neighborhoods of v and w,
respectively, and pv`Uq` pw`Uq Ă v`w`V ĂW . So addition is continuous. We continue with
scalar multiplication. Let W be an open neighborhood of rv, where r P R and v P E. Then there
exists V P B such that rv ` V ` V Ă W . Since V is absorbing by (ii) there exists ε ą 0 such that
ps´ rqv P V for all s P R with |s´ r| ă ε. Now if | ¨ | is non-archimedean choose t P Rˆ according
to (iii), and put Vn “ tnV for all n P N. In the archimedean case let t “ 1

2 and use (i) to construct
recursively a sequence pVnqnPN of elements of B such that 2nVn “ Vn ` . . . ` Vn Ă V , where the
sum has 2n summands. In either of these cases, choose N P N large enough so that |t|N ă 1

|r|`ε .
Then VN P B and v` VN is a neighborhood of v. Moreover, for w P v` VN there exists an element
x P V such that w ´ v “ tNx. Then the relation spw ´ vq “ stNx P V holds whenever |s´ r| ă ε
since VN is circled. Hence for such w and s

sw “ rv ` spw ´ vq ` ps´ rqv P rv ` V ` V ĂW .
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This means that scalar multiplication is continuous, and the proof is finished.

Morphisms of topological vector spaces

1.2.14 Definition By a morphism of topological vector spaces over the topological division ring R
one understands a continuous R-linear map f : E Ñ F between two topological vector spaces E
and F over R. The space of morphisms between E and F will be denoted HomR-TVSpE,Fq or just
HomRpE,Fq or HompE,Fq if now confusion can arrise.

1.2.15 Theorem The topological vector spaces over a topological division ring R as objects together
with their morphisms form an additive category which we denote by R-TVS. More precisely, R-TVS
is a category enriched over the category of R-vector spaces where addition and scalar multiplication
on the hom-spaces HompE,Fq are given by

` : HompE,Fq ˆHompE,Fq Ñ HompE,Fq, pf, gq ÞÑ f ` g “ pE Q v ÞÑ fpvq ` gpvq P Fq ,

¨ :RˆHompE,Fq Ñ HompE,Fq, pr, fq ÞÑ r ¨ f “ pE Q v ÞÑ r ¨ fpvq P Fq .

Proof. Observe first that the identity map idE on a topological vector space E is linear and continuous
and so is the composition g ˝ f of two morphisms of topological vector spaces f : E Ñ F and
g : F Ñ G. Hence topological vector spaces over R together with linear and continuous maps
between them form a category.

Next check that the hom-space HompE,Fq is an abelian group. Associativity and commutativity of
addition follow from the respective properties on F. The zero element is the constant map E Ñ F,
v ÞÑ 0 and the inverse of a morphism f : E Ñ F is given by ´f : E Ñ F, v ÞÑ ´fpvq. Similarly one
checks that multiplication by scalars on HompE,Fq is associative and distributes from the left and
from the right over addition since scalar multiplication on F has these properties. Finally, the unit of
R acts as identity on HompE,Fq since it does so on F. Hence HompE,Fq carries the structure of an
R left vector space.

Composition of morphisms HompE,Fq ˆ HompF,Gq Ñ HompE,Gq, pf, gq Ñ g ˝ f is an R-bilinear
map as the following equalities for f, f1, f2 P HompE,Fq, g, g1, g2 P HompF,Gq, r P R, and v P E
show:

pf ˝ pg1 ` g2qqpvq “ fppg1 ` g2qpvqq “ fpg1pvq ` g2pvqq “

“ f ˝ g1pvq ` f ˝ g2pvq “ pf ˝ g1 ` f ˝ g2qpvq ,

pf ˝ prgqqpvq “ fpprgqpvqq “ fprgpvqq “ rfpgpvqq “ prpf ˝ gqqpvq ,

ppf1 ` f2q ˝ gqpvq “ pf1 ` f2qpgpvqq “ f1pgpvqq ` f2pgpvqq “

“ f1 ˝ gpvq ` f2 ˝ gpvq “ pf1 ˝ g ` f2 ˝ gqpvq ,

pprfq ˝ gqpvq “ prfqpgpvqq “ rpfpgpvqqq “ rpf ˝ gpvqq “ prpf ˝ gqqpvq .

Hence R-TVS is a category enriched over the category of R-vector spaces. In particular, R-TVS then
is an additive category.

1.2.16 Example For every tvs E and non-zero element t of the ground ring R the map `t : E Ñ E,
v ÞÑ tv is an isomorphism of topological vector spaces by Proposition 1.2.3 (i).
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1.2.17 Proposition and Definition A linear map f : E Ñ F between topological vector spaces
over a valued division ring pR, | ¨ |q maps symmetric sets to symmetric sets and circled sets to circled
sets. If in addition f is continuous, then f is bounded that means it maps bounded subsets of E to
bounded subsets of F.

Proof. Since by linearity fptvq “ tfpvq for all v P E and t P R, fpCq is symmetric (respectively
circled) if the subset C Ă E is.

To verify the second claim let B Ă E be bounded and V Ă F a zero neighborhood. Then f´1pV q is
a zero neighborhood in E by continuity of f . Hence there exists an r P Rě0 such that B Ă tf´1pV q
for all t P R with |t| ě r. By linearity of f one obtains fpBq Ă tV for all such t, so f is bounded.

1.2.18 Remark By the proposition continuity of a linear map between topological vector spaces
implies the map to be bounded. As we will see later in this monograph, the converse does in general
not hold true unless the underlying topological vector spaces are for example normable.

Normed real division algebras and local convexity

1.2.19 The major class of topological divison rings over which topological vector spaces are defined
is formed by valued division rings pR, | ¨ |q which carry the structure of an R-algebra such that for all
r P R and x P R the equality

|rx| “ |r|8 ¨ |x|

holds true. We will therefore given them a particular name and call them normed real division algebras.
Note that the field of real numbers can be embedded into a normed real division algebra R by the
natural map R ÞÑ R, r ÞÑ r ¨ 1. Since R with its standard absolute value is archimedean, so is every
normed real division algebra. By the Frobenius theorem, Frobenius (1878), there exist only three finite
dimensional real division algebras, namely the field of real numbers R, the field of complex numbers
C, and the quaternions H.

1.2.20 Definition Under the assumption that R is a normed real division algebra one calls a subset
C Ă E of an R-vector space

(i) convex if tv ` p1´ tqw P C for all v, w P C and t P R with 0 ď t ď 1,

(ii) absolutely convex if rv ` sw P C for all v, w P C and r, s P R such that |r| ` |s| ď 1,

(iii) a cone if tv P C for all v P C and t P R with 0 ď t ď 1.

1.2.21 Lemma Let R be a normed real division algebra. A subset C of an R-vector space E then is
absolutely convex if and only if it is circled and convex.

Proof. The claim is trivial when C “ H, so we assume that C is nonempty.

Let C be absolutely convex. Since C contains at least one element v one has 0 “ 0 ¨ v ` 0 ¨ v P C.
Hence rv “ p1´ |r|q ¨ 0` rv P C for all v P C and r P R with |r| ď 1. So C is circled. By definition
of absolute convexity C is convex.

If C is circled and convex, then it contains with elements v, w also rv ` sw if |r| ` |s| ď 1. To see
this observe first that %v P C and σw P C where the elements %, σ P R have been chosen so that
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|%| “ |σ| “ 1, r “ |r| ¨ % and s “ |s| ¨ σ. Now if |r| ` |s| “ 0, then rv ` sw “ 0 P C since C is
circled. If |r| ` |s| ą 0, then

rv ` sw “ p|r| ` |s|q

ˆ

|r|

|r| ` |s|
%v `

|s|

|r| ` |s|
σw

˙

P C

since C is convex and circled. Hence C is absolutely convex.

1.2.22 Lemma A linear map f : E Ñ F between vector spaces over a normed real divison algebra
R maps convex sets to convex sets, absolutely convex sets to absolutely convex sets, and cones to
cones.

Proof. This an immediate consequence of the linearity of f .

1.2.23 Lemma Let E be a tvs over a normed real division algebra R, let C,D Ă E be convex and
r P R. Then the following holds true.

(i) The closure sC and the interior C̊ are convex.

(ii) The sets C `D and rC are convex.

(iii) If C is absolutely convex, then so are sC and C̊.

(iv) If C is absolutely convex, then so is rC for each r P Rˆ.

Proof. We consider only the cases C,D ‰ H because otherwise the claim is trivial.

ad (i ). Let t P 0, 1 . Then t sC ` p1 ´ tq sC Ă sC by continuity of the map E ˆ E Ñ E, pv, wq ÞÑ
tv`p1´ tqw. Hence sC is convex. Now let v, w be points of the interior of C and z “ tv`p1´ tqw.
Then z P C, and there exists a zero neighborhood U such that v ` U Ă C and w ` U Ă C. Let
u P U and compute

z ` u “ tv ` p1´ tqw ` tu` p1´ tqu “ tpv ` uq ` p1´ tqpw ` uq .

Since both v` u and w` u are elements of C so is z ` u by convexity of C. Hence z `U Ă C and
z lies in the interior of C.

ad (ii ). If v, w P C, x, y P D and t P 0, 1 , then by convexity of C and D

tpv ` xq ` p1´ tqpw ` yq “
`

tv ` p1´ tqw
˘

`
`

tx` p1´ tqy
˘

P C `D .

Hence C `D is convex. Similarly,

tprvq ` p1´ tqprwq “ r
`

tv ` p1´ tqw
˘

P rC ,

so rC is convex as well.

ad (iii ). Let C be absolutely convex. If C̊ ‰ H, then 0 P 1
2 C̊ ´

1
2 C̊ Ă C, hence 0 P C̊. By

Lemma 1.2.7 and (i) the claim now follows.

ad (iv ). By (ii), rC is convex, so it remains to show that rC is circled. Assume that v P rC. Then
v “ rw for a unique w P C. Since C is circled, tw P C for every t P R with |t| ď 1. Hence
tv “ rptwq P rC for such t and rC is circled.
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1.2.24 Proposition and Definition The intersection of a non-empty family pCiqiPI of convex (re-
spectively absolutely convex) subsets Ci Ă E, i P I of a topological vector space E over a normed
real division algebra R is convex (respectively absolutely convex). In particular, if A Ă E is a subset,
then the sets

ConvA “
č

AĂBĂE
B is convex

B and AConvA “
č

AĂBĂE
B is absolutely convex

B

are convex and absolutely convex, respectively. The set ConvA is called the convex hull of A and
is the smallest convex set containing A. Similarly, AConvA is the smallest absolutely convex set
containing A. It is called the absolutely convex hull of A. The closed convex hull ConvA and the
closed absolutely convex hull AConvA of A are defined by

ConvA “
č

AĂB“ sBĂE
B is convex

B and AConvA “
č

AĂB“ sBĂE
B is absolutely convex

B .

These sets have the property that ConvA is the smallest closed convex subset and AConvA the
smallest closed absolutely convex subset of E containing A.

Proof. Let C be the intersection
Ş

iPI

Ci and assume that each Ci is absolutely convex. Let v, w P C

and r, s P R with |r| ` |s| ď 1. Then v, w P Ci, hence rv ` sw P Ci for all i P I. Therefore
rv ` sw P C and C is absolutely convex. This argument also shows that C is convex if all Ci are
convex. The rest of the claim follows as in the proof of Proposition and Definition 1.2.8.

1.2.25 Remark The proposition in particular entails that A is convex if and only if ConvA “ A and
absolutely convex if and only if AConvA “ A. Analogously, ConvA “ A if and only if A is closed
and convex, and AConvA “ A if and only if A is closed and absolutely convex.

1.2.26 Lemma Let A Ă E be a non-empty subset of a tvs E over a normed real division algebra R.
Then

ConvA “

#

k
ÿ

i“1

tivi P E
ˇ

ˇ k P Ną0, v1, . . . vk P A, t1 . . . , tk P Rě0,
k
ÿ

i“1

ti “ 1

+

, (A.1.2.1)

AConvA “

#

k
ÿ

i“1

rivi P E
ˇ

ˇ k P Ną0, v1, . . . vk P A, r1 . . . , rk P R,
k
ÿ

i“1

|ri| ď 1

+

. (A.1.2.2)

For the closed hulls one has

ConvA “ ConvA and AConvA “ AConvA .

Finally, if A is circled, then
AConvA “ ConvA .

Proof. By definition, the right hand side of Eq. (A.1.2.1) is convex and contains A, hence it contains
ConvA. Conversely, one shows by induction on k P Ną0 and convexity of ConvA that each element
of the form

řk
i“1 tivi with v1, . . . , vk P A and t1, . . . , tk P Rě0 such that

řk
i“1 ti “ 1 is in ConvA.

This proves Eq. (A.1.2.1). The proof of Eq. (A.1.2.2) is similar. Observe that the right hand side
of Eq. (A.1.2.2) is absolutely convex and contains A. Hence it contains AConvA. An argument
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using induction on k P Ną0 and absolute convexity of AConvA shows that each element of the form
řk
i“1 rivi with v1, . . . vk P A and r1 . . . , rk P R such that

řk
i“1 |ri| ď 1 is in ConvA. So Eq. (A.1.2.2)

holds true as well. The claim about the closed hulls is a consequence of Lemma 1.2.23. For the proof
of the last claim it suffices to show that ConvA is circled if A is. To this end let v P ConvA and
r P R with |r| ď 1. Then one can write v in the form v “

řk
i“1 tivi with v1, . . . , vk P A and

t1, . . . , tk P Rě0, where
řk
i“1 ti “ 1. Hence rv “

řk
i“1 tiprviq, which is in ConvA, since rvi P A

for all i because A is circled.

1.2.27 Lemma Let A Ă E be a non-empty subset of a tvs E over a normed real division algebra R.

(i) If A is convex and t1, . . . , tk P Rě0 with k P Ną0, then

k
ÿ

i“1

tiA “

˜

k
ÿ

i“1

ti

¸

A .

(ii) If A is absolutely convex and r1, . . . , rk P R with k P Ną0, then

k
ÿ

i“1

riA “

˜

k
ÿ

i“1

|ri|

¸

A .

Proof. ad (i ). Obviously
řk
i“1 tiA Ą

´

řk
i“1 ti

¯

A. Let us show the converse inclusion. Without loss

of generality we can assume that ti ą 0 for all i. Then t “
řk
i“1 ti ą 0, so, after division by t, we

can reduce the claim to showing that
řk
i“1 tiA Ă A for t1, . . . , tk P Rą0 such that

řk
i“1 ti “ 1. But

řk
i“1 tiA Ă ConvA “ A by Lemma 1.2.26 and convexity of A.

ad (ii ). Since by absolute convexity riA “ |ri|A for i “ 1, . . . , k, the claim follows from (i).

1.2.28 Lemma Let K be one of the division rings C or H with their standard absolute values and
let E be a vector space over K. Then a convex subset C Ă E is absorbent in E if and only if it is
absorbent in the realification ER.

Proof. It suffices to show the non-trivial direction. So assume that C is convex and absorbent in the
realification ER. Denote by u1, . . . , un the standard basis of K over R with n “ 2 or n “ 4 depending
on K. In particular this means u1 “ 1. For given v P E there now exists t P Rě0 such that

˘
1

u1
v, . . . ,˘

1

un
v P rC for all r ě t .

Without loss of generality we can assume t ě 1. Let z P K with |z| ě nt. Then the vectors
c1 “ sgn z1

n
|z|u1

v, . . . , cn “ sgn zn
n

|z|un
v are elements of C. By convexity of C and since 0 P C one

has |z1|
|z| c1, . . . ,

|zn|
|z| cn P C. Again by convexity one concludes

1

z
v “

n
ÿ

i“1

zi
|z|2 ui

v “
n
ÿ

i“1

|zi|

n|z|
ci P C .

Hence C is absorbing and the claim is proved.
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1.2.29 Definition A topological vector space E over a normed real division algebra R for which
Axiom LCVS below holds true is called a locally convex topological vector space, a locally convex
vector space or shortly a locally convex tvs.

(LCVS) The vector space topology on E has a base consisting of convex sets.

1.2.30 Remark For better readability, we often say locally convex topology instead of locally convex
vector space topology.

1.2.31 Proposition The locally convex topological vector spaces over a normed real division algebra
R together with the continuous linear maps between them form a full subcategory of the category
R-TVS of topological R-vector spaces. It is denoted R-LCVS.

Proof. This is clear by definition.

1.2.32 Proposition and Definition The filter of zero neighborhoods of a locally convex topological
vector space E over a normed real divison algebra R has a filter base B with the following properties:

(i) For each V P B there exists U P B such that U ` U Ă V .

(ii) Every element of B is a barrel that means is absolutely convex, closed and absorbing.

(iii) Let r P Rˆ. Then V P B if and only if rV P B.

Conversely, if B is a filter base on an R-vector space E such that (i) holds true and such that each
element of B is absolutely convex and absorbing, then there exists a unique locally convex topology on
E such that B is a neighborhood base of the origin. It is the coarsest among all translation invariant
topologies for which B is a set of zero neighborhoods and is called the locally convex topology
generated or induced by B.

Proof. Let E be a locally convex tvs. Let B be the collection of all barrels which are at the same
time zero neighborhoods. Let V be an element of U0, the filter of zero neighborhoods. Since E is
(T3) by Proposition 1.2.3, there exists a closed zero neighborhood Va such that Va Ă V . By local
convexity of E there exists a convex zero neighborhood Vb with Vb Ă Va. By Proposition 1.2.13 there
exists a circled zero neighborhood Vc with Vc Ă Vb. The closed convex hull U “ Conv Vc then is a
barrel contained in V . Since it is a zero neighborhood it is an element of B, and B is a filter base of
U0. This proves (ii).

To verify (i), let V P B and observe that by continuity of addition there exist zero neighborhoods U1

and U2 such that U1 ` U2 Ă V . Choose U P B such that U Ă U1 X U2. Then U ` U Ă V .

Claim (iii) holds true since multiplication by an element r P Rˆ is a homeomorphism which preserves
circled and convex sets.

The remaining claim follows immediately from Proposition 1.2.13 and the observation that a real
division algebra is archimedean.

1.2.33 Corollary Let S be a non-empty set of absolutely convex and absorbent subsets of a vector
space E over a normed real divison algebra R. Then the set

B “
!

r
č

BPF

B P PpEq
ˇ

ˇ F P PfinpSq, F ‰ H & r P Rˆ
)
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consists of absolutely convex and absorbent subsets of V and is a base of the filter of zero neighbor-
hoods of a locally convex topology T on E uniquely determined by that property. This topology is the
coarsest among all vector space topologies for which S is a set of zero neighborhoods. The topology
T is called the locally convex topology generated or induced by S.

Proof. The intersection of finitely many absolutely convex and absorbing sets is non-empty and again
absolutely convex and absorbing by Lemma 1.2.12 (i) and Proposition and Definition 1.2.24. By
Lemma 1.2.12 (ii) and Lemma 1.2.23, the scalar multiple of an absolutely convex and absorbing set
again has these properties whenever the scalar is invertible. Hence each element of B is absolutely
convex and absorbing. Given two elements C,D P B there exist non-empty F,G P PfinpSq and
r, s P Rˆ such that C “ r

Ş

BPF

B and D “ s
Ş

BPG

B. Without loss of generality one can assume

that |r| ď |s|. Then A “ r
Ş

BPFYG

B P B and A “ C X rs´1D Ă C X D since D is balanced and

|rs´1| ď 1. Hence B is a filter base consisting of absolutely convex and absorbent sets. Moreover,
1
2C`

1
2C Ă C for every C P B by absolut convexity. By Proposition 1.2.32 the filter base B therefore

generates a unique locally convex topology T for which B is a base of the filter of zero neighborhoods.
Moreover, T is the coarsest translation invariant topology so that B is a set of zero neighborhoods.
This implies in particular that S is a set of zero neighborhoods for T. Now let T1 be a vector topology
such that each element of S is a zero neighborhood. Then finite intersections of elements of S are
zero neighborhoods with respect to T1 and therefore also all elements of B. Since T1 is translation
invariant one concludes that T is coarser than T1 and the claim is proved.

A.1.3. Seminorms and gauge functionals

1.3.1 Throughout the rest of this chapter the symbol K will always stand for the field of real numbers
R, the field of complex numbers C or the division algebra of quaternions H. We assume these division
algebras to be equipped with their standard absolute values | ¨ |. Moreover, vector spaces are assumed
to be defined over the ground field K unless mentioned differently and are always assumed to be left
vector spaces.

Seminorms and induced vector space topologies

1.3.2 Definition By a seminorm on a vector space E one understands a map p : E Ñ R with the
following properties:

(N0) The map p is positive that is ppvq ě 0 for all v P E.

(N1) The map p is absolutely homogeneous that means

pprvq “ |r| ppvq for all v P E and r P K.

(N2) The map p is subadditive or in other words satisfies the triangle inequality

ppv ` wq ď ppvq ` ppwq for all v, w P E.
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A seminorm is called a norm if in addition the following axiom is satisfied:

(N3) For all v P E the relation ppvq “ 0 holds true if and only if v “ 0.

A vector space E equipped with a norm } ¨ } : E Ñ Rě0 is called a normed vector space.

1.3.3 Let us introduce some useful further properties a map p : E Ñ R can have. One calls such a
map p

(1) positively homogeneous if pptvq “ t ppvq for all t P Rą0 and all v P E,

(2) sublinear if pptv ` swq ď t ppvq ` s ppwq for all t, s P Rě0 and all v, w P E, and

(3) convex if pptv ` swq ď t ppvq ` s ppwq for all t, s P Rě0 with t` s “ 1 and all v, w P E.

1.3.4 Lemma For a real-valued map p : E Ñ R on a vector space E the following are equivalent:

(i) p is sublinear.

(ii) p is positively homogeneous and convex.

(iii) p is positively homogeneous and subadditive.

Proof. Let p be sublinear. Then p is subadditive by definition. Subadditivity implies pp0q ď pp0q `
pp0q, hence pp0q ě 0. By sublinearity

pp0q “ pp0 ¨ 0` 0 ¨ 0q ď 0 ¨ pp0q ` 0 ¨ pp0q “ 0 ,

so pp0q “ 0. We show that p is positively homogeneous. Applying sublinearity again one checks for
v P E and t ě 0 that

pptvq “ pptv ` 0 ¨ 0q ď tppvq ` 0 ¨ pp0q “ tppvq ,

so p is positively homogeneous and the implication (i) ùñ (iii) follows. If p is positively homogeneous
and subadditive, then for v, w P E and t, s ą 0 with t` s “ 1

pptv ` swq ď pptvq ` ppswq ď tppvq ` sppwq,

so p is convex. This gives the implication (iii) ùñ (ii). If p is positively homogeneous and convex,
then one computes for v, w P E and t, s ě 0 with t` s ą 0

pptv ` swq “ pt` sq p

ˆ

t

t` s
v `

s

t` s
w

˙

ď pt` sq

ˆ

t

t` s
ppvq `

s

t` s
ppwq

˙

“ tppvq ` sppwq .

Since pp0q “ lim
tŒ0

ppt0q “ lim
tŒ0

t pp0q “ 0 by positive homogeneity, p then has to be sublinear and one

obtains the implication (ii) ùñ (i).

1.3.5 Lemma Let p : E Ñ R be a real-valued map defined on a vector space E over K.

(i) If p : E Ñ R is positively homogeneous, then pp0q “ 0.

(ii) If p : E Ñ R is subadditive, then pp0q ě 0 and for all v, w P E

|ppvq ´ ppwq| ď maxtppv ´ wq, ppw ´ vqu .
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(iii) If p : E Ñ R is convex, then the sets Bp,ε :“ tv P E | ppvq ă εu and Bp,ε :“ tv P E | ppvq ď εu
are convex for all ε ą 0.

(iv) If p is sublinear, then Bp,ε and Bp,ε are convex and absorbent for all ε ą 0.

Proof. ad (i ). As already observed, pp0q “ lim
tŒ0

ppt0q “ lim
tŒ0

t pp0q “ 0.

ad (ii ). Note that by subadditivity

pp0q ď pp0q ` pp0q, ppvq ´ ppwq ď ppv ´ wq, and ppwq ´ ppvq ď ppw ´ vq .

This entails (ii).

ad (iii ). Let v, w P tv P E | ppvq ă εu and 0 ď t ď 1. Then, by convexity of p,

p
`

tv ` p1´ tqw
˘

ď tppvq ` p1´ tqppwq ă tε` p1´ tqε “ ε .

Hence tv ` p1´ tqw P tv P E | ppvq ă εu. The proof for tv P E | ppvq ď εu is analogous.

ad (iv ). Convexity of the sets Bp,ε and Bp,ε holds by (iii). Moreover, Bp,ε Ă Bp,ε by definition. Hence
it suffices by Lemma 1.2.28 to show that Bp,ε is absorbent in the realification ER. Since p is positively
homogenous by Lemma 1.3.4 and 0 ď ppvq ` pp´vq for all v P E, one concludes that for all t P R
and v P E

|pptvq| ď |t|maxtppvq, pp´vqu .

Hence tv P Bp,ε if 0 ă t ă ε
maxtppvq,pp´vqu`1 , and Bp,ε is absorbent in ER.

1.3.6 Definition If p : E Ñ R is a seminorm on a vector space E, we denote for every v P E and
ε ą 0 by Bp,εpvq the (open) ε-ball associated with p and with center v that is the set

Bp,εpvq “
 

w P E
ˇ

ˇ ppw ´ vq ă ε
(

.

The closed ε-ball associated with p and with center v is defined as

Bp,εpvq “
 

w P E
ˇ

ˇ ppw ´ vq ď ε
(

.

The positive number ε is called the radius of the ball. In case the center of the ball is the origin, we
often write Bp,ε and Bp,ε for Bp,εp0q and Bp,εp0q, respectively. If in addition the radius equals 1, then
we usually write only Bp and Bp and call these sets the open respectively the closed unit ball. More
generally, for the particular radius 1 we denote the corresponding balls by Bppvq and Bppvq and call
them the open respectively closed unit balls with center v. When by the context it is clear which
seminorm p a ball is associated with we often do not mention p explicitely. This is in particular the
case when the underlying vector space is a normed vector space.

If P is a finite set or a finite family of seminorms on E we define the open and closed ε-multiballs
with center v by

BP,εpvq “
 

w P E
ˇ

ˇ ppw ´ vq ă ε for all p P P
(

and
BP,εpvq “

 

w P E
ˇ

ˇ ppw ´ vq ď ε for all p P P
(

,

respectively. As before, we abbreviate BP,ε “ BP,εp0q and BP,ε “ BP,εp0q.
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1.3.7 Remark For convenience, we will also use the symbols Bp,ε and Bp,ε to denote the sets
 

v P
E
ˇ

ˇ ppvq ă ε
(

and
 

v P E
ˇ

ˇ ppvq ď ε
(

, respectively, when p : E Ñ R is just a real-valued convex map
on the vector space E. Note that for such a p the set

 

v P E
ˇ

ˇ ppvq ă 0
(

might be non-empty. But
as we have shown in Lemma 1.3.5 the sets Bp,ε and Bp,ε associated to a convex p share with the the
balls associated to a seminorm several nice properties like convexity.

1.3.8 Proposition Let E be a K-vector space, and P a finite set of seminorms on E. Then, for
every ε ą 0 and v P E, the ε-multiballs BP,εpvq and BP,εpvq are convex. The ε-multiballs BP,ε and
BP,ε centered at the origin are absolutely convex and absorbent.

Proof. Axiom (N1) immediately entails that BP,ε and BP,ε are circled. Axiom (N2) together with
(N1) entails that the sets BP,εpvq and BP,εpvq are convex. Namely, if w1, w2 P BP,εpvq and t P r0, 1s,
then one has for all seminorms p P P

p ptw1 ` p1´ tqw2 ´ vq ď t p pw1 ´ vq ` p1´ tq p pw2 ´ vq ă t ε` p1´ tq ε “ ε

and likewise p ptw1 ` p1´ tqw2 ´ vq ď ε for all w1, w2 P BP,εpvq and p P P .

Now let v P E and ε ą 0 be given. Put tp “
ppvq`1

ε for every p P P and t0 “ maxttp | p P P u. Then
one has for all t P K with |t| ě t0 and for all p P P

p

ˆ

1

t
v

˙

ď
ε

ppvq ` 1
ppvq ă ε ,

hence v P tBP,ε. So BP,ε is absorbing. Since BP,ε contains the absorbing set BP,ε, it is absorbing as
well.

1.3.9 Proposition and Definition Assume to be given a set Q of seminorms on a vector space E.
Let PfinpQq be the collection of all finite subsets of Q. A base of a topology on E then is given by

B “
 

BP,εpvq
ˇ

ˇ P P PfinpQq, v P E, ε ą 0
(

.

The topology T generated by B is called the topology generated, induced or defined by Q. Moreover,
T is a locally convex vector space topology on E. It coincides with the coarsest translation invariant
topology on E such that each seminorm in Q is continuous.

Proof. Consider the set B0 of all multiballs BP,ε with P P PfinpQq and ε ą 0 centered at the origin.
Clearly, B0 is a filter base since for P1, P2 P PfinpQq and ε1, ε2 ą 0 the multiball BP1YP2,mintε1,ε2u

is contained in BP1,ε1 X BP2,ε2 . Moreover it consists of absolutely convex and absorbing sets by
Proposition 1.3.8.

By a similar argument one shows that B is base of a topology. Let BP1,ε1pv1q,BP2,ε2pv2q P B and
v P BP1,ε1pv1q X BP2,ε2pv2q. Let ε be the minium of the numbers ε1 ´ p1pv ´ v1q and ε2 ´ p2pv ´
v2q, where p1 runs through the elements of P1 and p2 through the ones of P2. Then ε ą 0 and
BP1YP2,εpvq Ă BP1,ε1pv1qXBP2,ε2pv2q, and B is a base for a topology T indeed. By construction, B0

then is a base for the filter of zero neighborhoods and each element of B0 is open in T. Moreover,
each closed multiball BP,εpvq is closed in T since the complement EzBP,εpvq contains with w also the
open multiball BP,δpwq, where δ “ mintppv ´ wq ´ ε|p P P u.
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We now prove continuity of addition with respect to T. Let v1, v2 P E, P P PfinpQq, and ε ą 0.
Since the triangle inequality holds for every seminorm in F , one has

BP, ε
2
pv1q ` BP, ε

2
pv2q Ă BP,εpv1 ` v2q ,

which entails continuity of addition at each pv1, v2q P Eˆ E. Next consider multiplication by scalars
and let λ P K and v P E. Again let P “ tp1, . . . , pnu P PfinpQq and ε ą 0. Let C1 “ suptpjpvq | 1 ď
j ď nu ` 1, C2 “ |λ| ` 1 and put δ1 “ mint1, ε

2C1
u and δ2 “

ε
2C2

. Then one obtains by absolute
homogeneity and subadditivity of each seminorm

pjpµw ´ λvq ď |µ| pjpw ´ vq ` |µ´ λ| pjpvq for all µ P K and w P E,

hence
Bδ1pλq ¨ BP,δ2pvq Ă BP,εpλ ¨ vq ,

where Bδ1pλq “ tµ P K | |µ ´ λ| ă δ1u. This shows continuity of scalar multiplication at each
pλ, vq P Kˆ E, and T is a vector space topology.

Since each of the base elements BP,ε P B0 is convex, Axiom LCVS holds true as well and the topology
T is locally convex.

Every seminorm p P Q is continuous with respect to the topology T since for all a ă b the preimage
p´1p a, b q “ Bp,bzBp,a is open in T. Now let T1 be a translation invariant topology on E for which
every seminorm p P Q is continuous. In that topology B0 is a set of zero neighborhoods. As shown
before, every element B P B0 is absolutely convex, absorbing and satisfies 1

2B `
1
2B Ă B. Hence by

Proposition and Definition 1.2.32 the topology T1 is finer than the locally convex topology generated
by B0. But the latter topology coincides with T by construction. This shows the last part of the
claim and the proof is finished.

Gauge functionals and induced seminorms

1.3.10 As we have seen, any vector space with a topology defined by a family of seminorms on it
is a locally convex topological vector space. The converse also holds true. The fundamental notion
needed for the proof of this is the following.

1.3.11 Definition Let E be a vector space and A Ă E absorbent. Then the map

pA : E Ñ Rě0, v ÞÑ pApvq “ inf
 

t P Rą0

ˇ

ˇ v P tA
(

is called the gauge functional, the Minkowski functional or the Minkowski gauge of A.

1.3.12 Remark By definition of an absorbent set,
 

t P Rą0

ˇ

ˇ v P tA
(

is non-empty whenever A Ă E
is absorbent. Hence pA is well-defined for such A.

1.3.13 Proposition The Minkowski gauge pA : E Ñ Rě0 of an absorbent subset A of a vector space
E has the following properties.

(i) The gauge functional is positively homogeneous that is pAptvq “ t pApvq for all t P Rą0 and all
v P E.
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(ii) If A is convex, then pA is subadditive and

Bppvq “
ď

0ătă1

tA Ă A Ă
č

1ăt

tA “ Bppvq .

(iii) If A is absolutely convex, then pA is a seminorm on E.

Proof. If t ą 0, then tv P sA for some s ą 0 if and only if v P s
tA. Hence

 

s P Rą0

ˇ

ˇ tv P sA
(

and
t
 

s P Rą0

ˇ

ˇ v P sA
(

coincide for all t ą 0, so (i) follows.

Assume that A is convex. Let v, w P E and ε ą 0. Then there exist t ą pApvq and s ą pApwq such
that v P tA, w P sA, t ă pApvq `

ε
2 and s ă pApwq `

ε
2 . By convexity of A and Lemma 1.2.27,

v ` w P tA ` sA “ pt ` sqA. Hence pApv ` wq ď pt ` sq ă pApvq ` pApwq ` ε. Since ε ą 0 was
arbitrary, pApv ` wq ď pApvq ` pApwq and pA is subadditive. If v P tA for some t with 0 ă t ă 1,
then pApvq ď t ă 1 by definition. Conversely, if pApvq ă 1, then there exists a t ą 0 such that t ă 1
and v P tA. Hence the equality Bppvq “

Ť

0ătă1 tA follows. Since A is absorbing, 0 is an element
of A. By convexity of A one therefore concludes tA “ p1 ´ tqt0u ` tA Ă A whenever 0 ă t ă 1.
For t ą 1 this shows 1

tA Ă A, hence A Ă tA. So the relation
Ť

0ătă1 tA Ă A Ă
Ş

1ăt tA is proved.
Now assume that v P tA for all t ą 1. Then pApvq ď 1 by definition. If conversely pApvq ď 1, then
there exists for each ε ą 0 an s ě 0 such that pApvq ď s, v P sA and s ă 1` ε. Hence, for t ě 1` ε
by Lemma 1.2.27 and 0 P A,

v P sA “ sA` pt´ sqt0u Ă sA` pt´ sqA “ tA .

Since ε ą 0 was arbitrary, v P tA for all t ą 1 follows. So one obtains the equality
Ş

1ăt tA “ Bppvq,
and (ii) is proved.

To verify (iii) recall that A is circled whenever A is absolutely convex. This entails for r P K, v P E
and absolutely convex A

pAprvq “ inf
 

t P Rą0

ˇ

ˇ rv P tA
(

“ inf
 

t P Rą0

ˇ

ˇ |r|v P tA
(

“ pAp|r|vq “ |r|pApvq ,

where for the last equality we have used (i).

1.3.14 Lemma Let A and B be absorbent subsets of a vector space E. Then the following holds
true.

(i) ptApvq “ pApt
´1vq for all t P Kˆ and v P E.

(ii) If B Ă A, then pA ď pB.

(iii) If A is convex, then v P tA for all v P E and t ą pApvq.

(iv) If A and B are convex, then the intersection A X B is absorbent and convex and pAXB “

suptpA, pBu, where suptpA, pBupvq “ suptpApvq, pBpvqu for all v P E.

Proof. ad (i ). If t P K is invertible, then v P tA if and only if t´1v P A.

ad (ii ). Let v P E and ε ą 0. Then there exists t with pBpvq ď t ă pBpvq ` ε such that v P tB. By
B Ă A this implies v P tA, hence pApvq ď t ă pBpvq ` ε. Since ε ą 0 was arbitrary, the estimate
pA ď pB follows.
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ad (iii ). By definition of the Minkowski gauge there exists s P R such that pApvq ă s ă t and
v P sA. By convexity of A one concludes s

t v “
s
t v `

`

1´ s
t

˘

¨ 0 P sA, hence v P tA.

ad (iv ). The intersection of convex sets is convex, so A X B is convex. Let v P E and choose
rA ě 0 and rB ě 0 such that v P tA for all t ě rA and v P sB for all s ě rB. Then v P
ptAqXptBq “ tpAXBq for all t ě maxtrA, rBu, so AXB is absorbent. One has pAXB ě suptpA, pBu
by (ii). To show the converse inequality assume that v P E and t ą suptpApvq, pBpvqu. Then
v P tA X tB “ tpA X Bq, which implies pAXBpvq ď t. Hence pAXBpvq ď suptpApvq, pBpvqu since
t ą suptpApvq, pBpvqu was arbitrary.

1.3.15 Lemma Let p : E Ñ R be a sublinear map on a vector space E and A Ă E convex. If

Bp Ă A Ă Bp ,

then the gauge functional pA coincides with suptp, 0u. If p is even a seminorm, then p “ pA.

Proof. Let p : E Ñ R be sublinear. Observe that then Bp is absorbent by Lemma 1.3.5 (iv).
Hence A must also be absorbent by assumption, so the associated Minkowski gauge pA is positively
homogeneous by Proposition 1.3.13 (i).

Assume now that there exists v P E such that maxtppvq, 0u ă pApvq. By positive homogeneity of
p and pA one can achive by possibly multiplying v by a positive real number that maxtppvq, 0u ă
1 ă pApxq. The first inequality entails v P Bp, the second v R Bp which is a contradiction. Next
assume that there exists v P E with pApvq ă maxtppvq, 0u. As before one can then achieve that
pApvq ă 1 ă maxtppvq, 0u for some v P E. By the first inequality one concludes v P A, by the
second v R A. This is a contradiction. So the equality maxtppvq, 0u “ pApvq holds for all v P E.

In case p is a seminorm, then ppvq ě 0 for all v P E and the second claim follows by the first.

1.3.16 Proposition Let E be a topological vector space, and p : E Ñ R be sublinear. Then the
following are equivalent.

(i) The map p is continuous in the origin.

(ii) The map p is uniformly continuous.

(iii) The map p is continuous.

(iv) The unit ball Bp is a zero neighborhood.

Proof. Let us first show (i) ùñ (ii). To this end fix ε ą 0. By assumption there exists a zero
neighborhood V Ă E such that |ppvq| ă ε for all v P V . By possibly passing to V X p´V q one can
assume that V is symmetric. Lemma 1.3.5 (ii) now implies

|ppvq ´ ppwq| ă ε for all v, w P V .

Hence p is uniformly continuous. The implications (ii) ùñ (iii) and (iii) ùñ (iv) are trivial. It
remains to prove (iv) ùñ (i). Assume that Bpp0, 1q is a zero neighborhood. Then there exists a
symmetric zero neighborhood V contained in Bpp0, 1q. Since pp0q “ 0 one concludes by Lemma 1.3.5
(ii)

|ppvq| ă maxtppvq, pp´vqu ă 1 for all v P V .

But this implies |ppvq| ă ε for all v P εV and ε ą 0, so p is continuous at the origin.

74



A.1. Topological Vector Spaces A.1.4. Function spaces and their topologies

Normability

1.3.17 Definition A topological vector space E is called seminormable if its topology is generated
by a single seminorm p : E Ñ Rě0. If the topology on E coincides with the vector space topology
generated by a norm } ¨ }, then one calls E normable.

1.3.18 Theorem (Kolmogorov’s normability criterion) A topological vector space E is normable
if and only if it is a ?? space and possesses a bounded convex neighborhood of the origin.

A.1.4. Function spaces and their topologies

1.4.1 Proposition Let X be a topological space and pY, dq a metric space. Then the following holds
true.

(i) The space

BpX,Y q “
 

f : X Ñ Y
ˇ

ˇ Dy0 P Y DC ą 0@x P X : d
`

fpxq, y0

˘

ď C
(

of bounded functions from X to Y is a metric space with metric

% : BpX,Y q ˆBpX,Y q Ñ Rě0, pf, gq ÞÑ sup
xPX

d
`

fpxq, gpxq
˘

.

(ii) If pY, dq is complete, then pBpX,Y q, %q is so, too.

(iii) The space
CbpX,Y q “ CpX,Y q XBpX,Y q

of continuous bounded functions from X to Y is a closed subspace of BpX,Y q.

Proof. Note first that by the triangle inequality there exists for every f P BpX,Y q and y P Y a real
number Cf,y ą 0 such that

d
`

fpxq, y
˘

ď Cf,x for all x P X .

ad (i ). Before verifying the axioms of a metric for % we need to show that % is well-defined meaning
that supxPX d

`

fpxq, gpxq
˘

ă 8 for all f, g P BpX,Y q. To this end fix some y P Y and observe using
the triangle inequality that

d
`

fpxq, gpxq
˘

ď d
`

fpxq, y
˘

` d
`

y, gpxq
˘

ď Cf,y ` Cg,y for all x P X .

Since furthermore d
`

fpxq, gpxq
˘

ě 0 for all x P X, the map % is well-defined indeed with image in
Rě0. If %pf, gq “ 0, then d

`

fpxq, gpxq
˘

“ 0 for all x P X, hence f “ g. Obviously, % is symmetric
since d is symmetric. Finally, let f, g, h P BpX,Y q and check using the triangle inequality for d:

%pf, gq “ sup
xPX

d
`

fpxq, gpxq
˘

ď sup
xPX

`

d
`

fpxq, hpxq
˘

` d
`

hpxq, gpxq
˘˘

ď

ď sup
xPX

d
`

fpxq, hpxq
˘

` sup
xPX

d
`

hpxq, gpxq
˘

“ dpf, hq ` dph, gq .

Hence % is a metric.
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ad (ii ). Assume pY, dq to be complete and let pfnqnPN be a Cauchy sequence in BpX,Y q. Let ε ą 0
and choose Nε P N so that

%pfn, fmq ă ε for all n,m ě N .

Then for every x P X the relation

d
`

fnpxq, fmpxq
˘

ă ε for all n,m ě Nε (A.1.4.1)

holds true, so pfnpxqqnPN is a Cauchy sequence in Y . By completeness of pY, dq it has a limit which
we denote by fpxq. By passing to the limit mÑ8 in (A.1.4.1) one obtains that

d
`

fpxq, fnpxq
˘

ď ε for all x P X and n ě Nε . (A.1.4.2)

Using the triangle inequality one infers from this for an element y P Y which we now fix that

d
`

fpxq, yq
˘

ď d
`

fpxq, fN1pxqq
˘

` d
`

fN1pxq, y
˘

ď 1` CfN1
,y .

Hence f is a bounded function. Moreover, (A.1.4.2) entails that

%pf, fnq “ sup
xPX

d
`

fpxq, fnpxq
˘

ď ε for all n ě Nε ,

so pfnqnPN converges to f .

ad (iii ). We have to show that the limit f of a sequence pfnqnP of functions fn P CbpX,Y q which
converges in pBpX,Y q, %q has to be continuous. To this end let ε ą 0 and choose Nε P N so that

%pfn, fq ă
ε

3
for all n ě Nε .

Let x0 P X. By continuity of fNε there exists a neighborhood U Ă X of x so that

d
`

fNεpxq, fNεpx0q
˘

ă
ε

3
for all x P U .

By the triangle inequality one concludes that

d
`

fpxq, fpx0q
˘

ď d
`

fpxq, fNεpxq
˘

` d
`

fNεpxq, fNεpx0q
˘

` d
`

fNεpx0q, fpx0q
˘

ă ε

for all x P U . Hence f is continuous at x0. Since x0 P X was arbitrary f , is a continuous map, hence
an elemnt of CbpX,Y q.

1.4.2 Proposition Let X be a topological space and K the division algebra of real or complex
numbers or of quaternions. Then the following holds true.

(i) The space BpX,Kq of bounded K-valued functions on X can be expressed as

BpX,Kq “
 

f : X Ñ K
ˇ

ˇ DC ą 0@x P X : |fpxq| ď C
(

. (A.1.4.3)

It carries the structure of a K-algebra by pointwise addition and multiplication of functions and
becomes a Banach algebra when equipped with the supremums-norm

} ¨ }8 : BpX,Kq Ñ K, f ÞÑ sup
xPX

|fpxq| .
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(ii) The subspace CbpX,Kq Ă BpX,Kq of bounded continuous K-valued functions on X is a closed
subalgebra of

`

BpX,Kq, } ¨ }8
˘

, so a Banach algebra as well when endowed with the supremums-
norm. For X compact this means in particular that the algebra

`

CpX,Kq, } ¨ }8
˘

is a Banach
algebra.

Proof. Eq. (A.1.4.3) is obvious since the distance of two elements a, b P K is given by dpa, bq “ |a´b|,
so in particular dpa, 0q “ |a|. Let f, g P BpX,Kq and choose Cf , Cg ě 0 so that |fpxq| ď Cf and
|gpxq| ď Cg for all x P X. Then, by the triangle inequality and absolute homogeneity of the absolute
value,

|fpxq ` gpxq| ď Cf ` Cg, |a fpxq| ď |a|Cf , and |fpxq ¨ gpxq| ď Cf ¨ Cg .

Hence the sum and the product of two bounded functions are bounded and so is any scalar multiple
of a bounded function. Therefore, BpX,Kq is an algebra over K. Using the triangle inequality
and absolute homogeneity of the absolute value again one verifies that }f}8 is a norm on BpX,Kq
indeed and that it fulfills }fg}8 ď }f}8 ¨ }g}8 for all f, g P BpX,Kq. Furthermore, by definition,
}f}8 “ %pf, 0q for all f P BpX,Kq, where % is defined as in Proposition 1.4.1. Since pBpX,Kq, %q is
a complete metric space, pBpX,Kq, } ¨ }8q therefore is a Banach algebra. This proves the first claim.

For the second observe that for f, g P CbpX,Kq and a P K the sum f ` g, the scalar multiple af ,
and the product f ¨ g are elements of CbpX,Kq again. To verify this let x P X and ε ą 0. Choose
neighborhoods U1 and U2 of x so that

|fpyq ´ fpxq| ă min

"

ε

2
,

ε

|a| ` 1
,

ε

2p|gpxq| ` 1q

*

for y P U1

and

|gpyq ´ gpxq| ă

"

1,
ε

2
,

ε

2p|fpxq| ` 1q

*

for y P U2 .

Then for all y P U1 X U2

|pf ` gqpyq ´ pf ` gqpxq| ď |fpyq ´ fpxq| ` |gpyq ´ gpxq| ă ε ,

|pafqpyq ´ pafqpxq| ď |a| ¨ |fpyq ´ fpxq| ă ε ,

|pf ¨ gqpyq ´ pf ¨ gqpxq| ď |gpyq| ¨ |fpyq ´ fpxq| ` |fpxq| ¨ |pgpyq ´ gpxq| ă ε .

This means that f ` g, af and fg are continuous in x, hence elements of CbpX,Kq since x P X was
arbitrary. So CbpX,Kq is a subalgebra of BpX,Kq. By Proposition 1.4.1 one knows that CbpX,Kq
is a closed subspace of BpX,Kq. The rest of the claim is obvious.

1.4.3 As the next step, we introduce seminorms and their topologies on spaces of differentiable
functions defined over an open set Ω Ă Rn. We agree that from now on Ω will always denote in this
section an open subset of Rn. For any differentiability order m P NY t8u the symbol CmpΩq stands
for the space of m-times continuously differentiable complex valued functions on Ω. For i “ 1, . . . , n
we denote by xi : Rn Ñ R the i-th coordinate function and, if m ě 1, by Bi : CmpΩq Ñ Cm´1pΩq
the operator which maps f P CmpΩq to the partial derivative Bf

Bxi
. More generally, if α P Nn is a

multiindex satisfying |α| “ α1 ` . . . αn ď m, then we write Bα : CmpΩq Ñ Cm´|α|pΩq for the higher
order partial derivative which maps f P CmpΩq to B|α|f

Bx
α1
1 ¨...¨Bxαnn

. Recall that the sum and the product
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of two m-times differentiable functions and scalar multiples of m-times differentiable functions are
again m-times differentiable, hence CmpΩq forms a C-algebra. Now we define sCmpΩq to be the space
of continuous functions on the closure sΩ which are m-times continuosly differentiable on Ω so that
each of its partial derivatives of order ď m has a continuos extension to sΩ. Since the operators Bi
are linear and also derivations by the Leibniz rule, sCmpΩq is a subalgebra of CmpΩq. In general, these
algebras do not coincide as for example the function 1

x on Rą0 shows. It is an element of C8pRą0q

but can not be extended to a continuous function on Rě0, so is not an element of sC8pRą0q.

If X Ă Rn is locally closed which means that X is the intersection of an open and a closed susbet of
Rn, then define CmpXq as the quotient space CmpΩq{JXpΩq, where Ω Ă Rn open is chosen so that
X “ sXXΩ and where JX denotes the ideal sheaf of all m-times continuously differentiable functions
vanishing on X that is

JXpΩq “
 

f P CmpΩq
ˇ

ˇ f |X “ 0
(

.

Using a smooth partition of unity type of argument one shows that CmpXq does not depend on
the particular choice of the neighborhood Ω in which X is relatively closed and that CmpXq can
be naturally identified with the space of continuous functions on X which have an extension to an
element of CmpΩq.

1.4.4 Proposition Let Ω Ă Rn be open and bounded and m P Ną0. Then sCmpΩq equipped with
the norm

} ¨ }Ω,m : sCmpΩq Ñ Rě0, f ÞÑ

A.1.5. Summability

1.5.1 Definition Assume to be given a locally convex topological vector space V over the field K
of real or complex numbers. Let pviqiPI be a family of elements of V. Let FpIq be the set of finite
subsets of I and note that it is filtered by set-theoretic inclusion. The family pviqiPI then gives rise
to the net

´

ř

iPJ vi

¯

JPFpIq
. One calls the family pviqiPI summable to an element v P V if the net

´

ř

iPJ vi

¯

JPFpIq
converges to v. In other words this means that for every convex zero neighborhood

U Ă V and ε ą 0 there exists an element JU,ε P FpIq such that for all finite sets J with JU,ε Ă J Ă I

pU

˜

v ´
ÿ

iPJ

vi

¸

ă ε .

As before, pU denotes here the gauge of U . If V is Hausdorff, the limit v of a summable family pviqiPI
is uniquely determined, and one writes in this situation

v “
ÿ

iPI

vi .

We denote the space of summable families in V over the given index set I by `1pI,Vq. For E “ C
we just write `1pIq instead of `1pI,Cq. If in addition the index set coincides with N, we briefly denote
`1pNq by `1.
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1.5.2 Proposition (Cauchy criterion for summability) Let V be a complete locally convex topo-
logical vector space. A family pviqiPI of elements of V then is summable to some v P V if and only
if it satisfies the following Cauchy condition:

(C) For every convex zero neighborhood U Ă V and ε ą 0 there exists an element JU,ε P FpIq such
that for all K P FpIq with K X JU,ε “ H the relation

pU

˜

ÿ

iPK

vi

¸

ă ε

holds true.

Proof. By completeness of V it suffices to verify that the net
´

ř

iPJ vi

¯

JPFpIq
is a Cauchy net if

and only if condition (C) is satisfied. Recall that one calls
´

ř

iPJ vi

¯

JPFpIq
a Cauchy net if for every

convex zero neighborhood U Ă V all ε ą 0 there exists an element JU,ε P FpIq such that for all
J, J 1 P FpIq containing JU,ε as a subset the relation

pU

˜

ÿ

iPJ

vi ´
ÿ

iPJ 1

vi

¸

ă ε

holds true. But that is clearly equivalent to condition (C).

1.5.3 Several other notions of summability have been introduced in the analysis and functional analysis
literature. These are mainly either used to establish summability criteria or are used in the study of
topological tensor products and nuclearity of locally convex topological vector spaces, see Grothendieck
(1955); Pietsch (1972). In the following we define these further notions of summability and study
their properties. The symbol V hereby always stands for a locally convex tvs, I always denotes a
nonempty index set, and FpIq the set of its finite subsets.

1.5.4 Definition A family pviqiPI in V is called weakly summable to v P V if for every continuous
linear form α : V Ñ K the net

´

ř

iPJ αpviq
¯

JPFpIq
converges in K to αpvq. In other words this

means that for every α P V1 and ε ą 0 there exists a finite set Jα,ε Ă I such that for all finite sets J
with Jα,ε Ă J Ă I

ˇ

ˇ

ˇ

ˇ

ˇ

αpvq ´
ÿ

jPJ

αpviq

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε .

The set of all weakly summable families in V with index set I is denoted `1rI,Vs.

1.5.5 Definition A family pviqiPI in V is called absolutely summable if for every circled convex zero
neighborhood U Ă V there exists some C ě 0 such that

ÿ

iPJ

pU pviq ď C for all J P FpIq .

We denote the set of all absolutely summable families in V by `1tI,Vu.
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1.5.6 Proposition A family pviqiPI Ă V is absolutely summable if and only if for every element U
of a basis of circled convex zero neighborhoods there exists a C ě 0 such that

ÿ

iPJ

pU pviq ď C for all J P FpIq .

Proof.

1.5.7 Definition A family pviqiPI in V is called totally summable if there exists a bounded absolutely
convex subset B Ă V and a C ě 0 such that

ÿ

iPJ

pB pviq ď C for all J P FpIq .

We write `1xI,Vy for the set of all totally summable families in V.

Summable families of complex numbers

1.5.8 Lemma (cf. (Pietsch, 1972, Lem. 1.1.2)) Let pziqiPI be a family of complex numbers for
which there exists a positive real number C ą 0 such that

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPJ

zi

ˇ

ˇ

ˇ

ˇ

ˇ

ď C for all J P FpIq .

Then one has the estimate
ÿ

iPJ

|zi| ď 4C for all J P FpIq .

Proof. We assume first that all zi are real. Then let I` the set of all indices i P I such that zi ě 0,
and I´ the set of all i P I such that zi ă 0. Then, for all finite J Ă I

ÿ

iPJ

|zi| “
ÿ

iPJXI`

|zi| `
ÿ

iPJXI´

|zi| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPJXI`

zi

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPJXI´

zi

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2C .

In the general case decompose zi into real and imaginary parts xi “ Rezi and yi “ Imzi. By the
triangle inequality one obtains for all finite J Ă I

ÿ

iPJ

|zi| ď
ÿ

iPJ

|xi| `
ÿ

iPJ

|yi| ď 4C .

1.5.9 Proposition For a family pziqiPI of complex numbers the following are equivalent.

(i) The family pziqiPI is summable.

(ii) The family p|zi|qiPI is summable.

(iii) The family pziqiPI is absolutely summable.

(iv) There exists some C ą 0 such that
ř

iPJ |zi| ď C for all J P FpIq.
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In case that one hence all of the conditions are fulfilled, the estimate
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPI

zi

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

iPI

|zi|

holds true.

Proof. Assume that pziqiPI is absolutely summable. Since C is normed with norm given by the absolut
value this just means that there exists some C ą 0 such that

ř

iPJ |zi| ď C for all J P FpIq. Hence
the supremum c “ sup t

ř

iPJ |zi| | J P FpIqu exists and is ď C. For given ε ą 0 choose Jε P FpIq
such that

c´ ε ď
ÿ

iPJε

|zi| ď c .

Then one has for all K P FpIq with K X Jε “ H

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPK

zi

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

iPK

|zi| ď ε .

Hence p
ř

iPJ ziqJPFpIq is a Cauchy net, so has to converges by completeness of C. This proves
summability of pziqiPI .

Vice versa, assume now that pziqiPI is summable. Then p
ř

iPJ ziqJPFpIq is a Cauchy net. Hence there
exists an element J1 P FpIq such that for all K P FpIq with K X J1 “ H the inequality

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPK

zi

ˇ

ˇ

ˇ

ˇ

ˇ

ă 1

holds true. Let C “
ř

iPJ1
|zi|. Then one has for all J P FpIq

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPJ

zi

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPJzJ1

zi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPJXJ1

zi

ˇ

ˇ

ˇ

ˇ

ˇ

ď 1` C .

By the preceding lemma the set of partial sums
ř

iPJ |zi|, where J runs through the finite subsets of
I, is then bounded by 4` 4C, hence pziqiPI is absolutely summable.

Summability in Banach spaces

1.5.10 Proposition Let V be a normed vector space. For a family pviqiPI of elements in V the
following are equivalent:

(i) The family pviqiPI is absolutely summable.

(ii) The family p}vi}qiPI is summable.

(iii) There exists some C ą 0 such that
ř

iPJ }vi} ď C for all J P FpIq.

If V is even a Banach space, these conditions are all equivalent to
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(iv) The family pviqiPI is summable.

Proof. (ii) and (iii) are equivalent by Proposition 1.5.9 Assume now that (i) holds true.

to do: Carl Neumann series

Properties of and relations between the various summability types

1.5.11 Theorem Let I be a non-empty index set. Then the spaces `1pI,Vq of summable families,
`1rI,Vs of weakly summable families, `1tI,Vu of absolutely summable families and `1xI,Vy of totally
summable families in E are all subvector spaces of the product vector space EI “ ΠiPIE. Furthermore
one has the following chain of inclusions:

`1xI,Vy Ă `1tI,Vu and `1pI,Vq Ă `1rI,Vs .

If E is complete, then one even has

`1tI,Vu Ă `1pI,Vq

Proof. Now let pviq be a summable family and α : V Ñ K a continuous linear form.

Let U be an absolutely convex zero neighborhood. Then U absorbes B, so there exists r ą 0 such
that B Ă rU . Hence

A.1.6. Topological tensor products

1.6.1 Definition (cf. (Grothendieck, 1955, Chap. I, § 3, no 3)) Let V and W be two locally con-
vex topological vector spaces over the ground field K. A locally convex vector topology τ on the
(algebraic) tensor product VbW is called compatible with the tensor product structure, an admissible
tensor product topology or just admissible if the following conditions hold true:

(ATPT1) The canonical map VˆW Ñ Vbτ W is seperately continuous that is for each v P V and
each w P W the linear maps

W Ñ V bτ W, y ÞÑ v b y and V Ñ V bτ W, x ÞÑ xb w

are continuous where V bτ W denotes the vector space V bW equipped with τ .

(ATPT2) For all linear maps α P V1 and β P W1 the canonical linear map map αbβ : Vbτ W Ñ K
is continuous.

(ATPT3) For every equicontinuous subset A Ă V1 and equicontinuous subset B Ă W1 the set
tαb β | α P A& β P Bu is an equicontinuous subset of the topological dual of V bτ W.

The locally convex vector topology τ is called strongly compatible with the tensor product structure,
a strongly admissible tensor product topology or briefly strongly admissible if it satisfies:
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(sATPT) The canonical map V ˆW Ñ V bτ W is continuous where V ˆW carries the product
topology.

1.6.2 The admissible respectively strongly admissible vector topologies on V b W are obviously
partially ordered by set-theoretic inclusion. Therefore, the following definition makes sense.

1.6.3 Definition
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A.2.1. Schwartz distributions

A.2.2. Pullback of distributions

2.2.1 LetM and N be smooth manifolds and f : M Ñ N a smooth map. One then has a continuous
pullback map f˚ : C8pNq Ñ C8pMq which maps an element h P C8pNq to the composition
h ˝ f : M Ñ R which obviously is a smooth function on M . The Faà-di-Bruno formula from
Theorem 8.1.10 tells that f˚ is continuous indeed. In this section we want to establish criteria under
which the pullback of functions can be extended to a pullback of distributions. We also will study
continuity properties of the distributional pullback operation

Let us start with the following observation.

2.2.2 Lemma Let f : U1 Ñ U2 be a diffeomorphism between two open subsets U1, U2 Ă Rn and λ
the Lebesgue measure on Rn. Then for every u P CpU2q and ϕ P DpU1q the equality

ż

U1

ϕf˚u dλ “

ż

U2

pϕ ˝ f´1qu |detDf´1| dλ

holds true.

Proof. The claim is an immediate consequence of the change-of-variables formula.

2.2.3 Using the lemma as guideline we now extend the pullback of functions to distributions. Denote
for U Ă Rn by x¨, ¨y the pairing between D1pUq and DpUq. Under the assumptions of the lemma
assume u to be a distribution on U1 that is an element of D1pU2q. Then the map

f˚u : DpU1q Ñ R, ϕ ÞÑ xu, |detDf´1| pf´1q˚ϕy .

is an element of the distribution space D1pU1q since the map

DpU1q Ñ DpU2q, ϕ ÞÑ |detDf´1|ϕ ˝ f´1

is linear and continuous with respect to the LF-topologies on DpU1q and DpU2q. One calls f˚u the
pullback of the distribution u under f . By Lemma 2.2.2, this pullback operation extends the one for
continuous functions and it is obviously uniquely determined by that property.

We continue with another observation.
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2.2.4 Lemma Assume that U Ă Rn is open, f : U Ñ R a submersion and ϕ P DpUq a test function.
Then the map

f˚ϕ : RÑ R, t ÞÑ
d

dt

ż

txPU |fpxqătu
ϕpxqdx

is well-defined, smooth and has compact support.

Proof. Let us assume first that the map Ψ : U Ñ Rn, px1, . . . , xnq ÞÑ
`˘

is

todo Possibly assume that M is orientable and carries a volume form.

A.2.3. Hyperfunctions of a single variable

2.3.1 Let us introduce some notation. For every open intervall I Ă R call an open subset U Ă C
such that I “ U X R a complex neighborhood of I. Denote by C` the upper complex half-plane
tz P C | Imz ą 0u and by C´ the lower complex half-plane tz P C | Imz ă 0u. More generally, put
U` “ U X C` and U´ “ U X C´ for every open subset U Ă C.
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A.3.1. Inner product spaces

3.1.1 Let us first remind the reader that as before K stands for the field of real or of complex numbers.
We will keep this notational agreement throughout the whole chapter.

3.1.2 Definition By a sesquilinear form on a K-vector space V one understands a map x¨, ¨y :
V ˆV Ñ K with the following two properties:

(SF1) The map x¨, ¨y is conjugate-linear in its first coordinate which means that

xv1 ` v2, wy “ xv1, wy ` xv2, wy and xrv, wy “ rxv, wy

for all v, v1, v2, w P V and r P K.

(SF2) The map x¨, ¨y is linear in its second coordinate which means that

xv, w1 ` w2y “ xv, w1y ` xv, w2y and xv, rwy “ rxv, wy

for all v, w,w1, w2 P V and r P K.

A hermitian form is a sesquilinear form x¨, ¨y on V with the following additional property:

(SF3) The map x¨, ¨y is conjugate-symmetric which means that

xv, wy “ xw, vy for all v, w P V .

A sesquilinear form x¨, ¨y is called weakly-nondegenerate if it satisfies axiom

(SF4w) For every v P V, the map V Ñ K, w Ñ xw, vy is the zero map if and only if v “ 0.

Finally, one calls a hermitian form x¨, ¨y on V positive semidefinite if

(SF5s) xv, vy ě 0 for all v P V.

3.1.3 Remark Recall that a map x¨, ¨y : V ˆ V Ñ K is called bilinear if it satisfies (SF2) and the
following condition:

(BF1) The map x¨, ¨y is linear in its first coordinate which means that

xv1 ` v2, wy “ xv1, wy ` xv2, wy and xrv, wy “ rxv, wy

for all v, v1, v2, w P V and r P K.
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In case the underlying ground field K coincides with the field of real numbers, a sesquilinear form is
by definition the same as a bilinear form, and a hermitian form the same as a symmetric bilinear form.

3.1.4 Given a positive semidefinite hermitian form x¨, ¨y on a K-vector space V, one calls two
vectors v, w P V orthogonal if xv, wy “ 0. Since the hermitian form x¨, ¨y is assumed to be positive
semidefinite, the map

} ¨ } : V Ñ Rě0, v ÞÑ }v} “
a

xv, vy

is well-defined. We will later see that } ¨ } is a seminorm on V and therefore call the map } ¨ } the
seminorm associated to x¨, ¨y. The following formulas are immediate consequences of the properties
defining a positive semidefinite hermitian form and the definition of the associated seminorm:

}v ` w}2 “ }v}2 ` 2Re xv, wy ` }w}2 for all v, w P V , (A.3.1.1)

}v ` w}2 “ }v}2 ` }w}2 for all orthogonal v, w P V , (A.3.1.2)

}v ` w}2 ` }v ´ w}2 “ 2
`

}v}2 ` }w}2
˘

for all v, w P V , (A.3.1.3)

}rv} “
a

|r|2xv, vy “ |r|}v} for all v, w P V and r P K . (A.3.1.4)

Formula (A.3.1.2) is an abstract version of the pythagorean theorem, Equation (A.3.1.3) is called the
parallelogram identity. The triangle inequality for the map } ¨ } will turn out to be a consequence of
the next result.

3.1.5 Proposition (Cauchy–Schwarz inequality) Given a positive semidefinite hermitian form x¨, ¨y
on a K-vector space V the following inequality holds true:

|xv, wy| ď }v}}w} for all v, w P V. (A.3.1.5)

Equality holds if v and w are linearly dependant. In case x¨, ¨y is positive definite, the converse holds
true as well.

Proof. First consider the case where }v} “ }w} “ 0. Note that this does not imply that v “ 0 (or
w “ 0) unless the hermitian form x¨, ¨y is positive definite. Now put c “ ´xv, wy and compute

0 ď }cv ` w}2 “ 2Re
`

c xv, wy
˘

“ ´2|xv, wy|2 . (A.3.1.6)

This entails xv, wy “ 0 and the Cauchy–Schwarz inequality is proved for }v} “ }w} “ 0.

If }v} ‰ 0 or }w} ‰ 0, we can assume without loss of generality that }v} ‰ 0. Under this assumption
put

c “ ´
xv, wy

}v}2

and compute

0 ď }cv ` w}2 “ |c|2}v}2 ` 2Re
`

c xv, wy
˘

` }w}2 “

“
|xv, wy|2

}v}2
´ 2

|xv, wy|2

}v}2
` }w}2 “ }w}2 ´

|xv, wy|2

}v}2
.

(A.3.1.7)

Hence the estimate
|xv, wy|2 ď }v}2}w}2
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holds which entails the Cauchy–Schwarz inequality.

In the case where v, w are linearly dependant nonzero elements of V there exists a nonzero scalar
a P K such that v “ aw. Therefore

|xv, wy| “ |a| }w}2 “ }v}}w} .

If one of v or w is 0, then both sides of the Cauchy–Schwarz inequality are 0.

In the positive definite case, equality in (A.3.1.5) entails by Equation (A.3.1.7) that cv ` w “ 0
whenever v ‰ 0. If v “ 0, then v “ 0 ¨ w. In either case this means that v and w are linearly
dependant.

3.1.6 Lemma A positive semidefinite hermitian form x¨, ¨y on aK-vector space V is weakly-nondegenerate
if and only if it is positive definite that is if and only if

(SF5p) xv, vy ą 0 for all v P Vzt0u.

Proof. A positive definite real bilinear or complex hermitian form x¨, ¨y is weakly-nondegenerate since
for every v P Vzt0u the linear form xv,´y : V Ñ K is nonzero by xv, vy ą 0.

Conversely, if xv,´y : V Ñ K is nonzero for all v P Vzt0u, then there exists an element w P V such
that xw, vy ‰ 0. The Cauchy–Schwarz inequality entails

0 ă |xw, vy|2 ď xw,wy xv, vy ,

which implies xv, vy ą 0. Hence x¨, ¨y is positive definite.

3.1.7 Proposition The map

} ¨ } : V Ñ Rě0, v ÞÑ }v} “
a

xv, vy

associated to a positive semidefinite hermitian form x¨, ¨y on a K-vector space V is a seminorm. If
the hermitian form is positive definite, then } ¨ } is even a norm.

Proof. Absolute homogeneity (N1) is given by Eq. (A.3.1.4). The triangle inequality is a consequence
of the Cauchy–Schwarz inequality:

}v ` w}2 “ }v}2 ` 2Re xv, wy ` }w}2 ď }v}2 ` 2 }v} }w} ` }w}2 “
`

}v} ` }w}
˘2
.

Finally, if x¨, ¨y is positive definite, then }v} “
a

xv, vy ą 0 for all v P Vzt0u, so } ¨ } is a norm.

3.1.8 Definition By an inner product or a scalar product on a K-vector space H one understands
a positive definite hermitian form on H. A K-vector space H endowed with an inner product x¨, ¨y :
H ˆHÑ K is called an inner product space or a pre-Hilbert space.

A hermitian form on a K-vector space H which is only positive semidefinite is called a semi-inner
product or a semi-scalar product.

A Hilbert space is an inner product space pH, x¨, ¨yq which is complete as a normed vector space. In
other words, a Hilbert space is Banach space where the norm on the space is induced by an inner
product.
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3.1.9 Examples (a) The vector space Rn with the euclidean inner product

x¨, ¨y : Rn ˆ Rn Ñ R,
`

pv1, . . . , vnq, pw1, . . . , wnq
˘

ÞÑ

n
ÿ

i“1

viwi

is a real Hilbert space. Obviously, x¨, ¨y is linear in the first argument, symmetric, and positive definite,
hence a real inner product. The associated norm is the euclidean norm. We have seen before that
Rn with the euclidean norm is complete.

(b) The vector space Cn together with the hermitian form

x¨, ¨y : Cn ˆ Cn Ñ C,
`

pv1, . . . , vnq, pw1, . . . , wnq
˘

ÞÑ

n
ÿ

i“1

viwi

is a complex Hilbert space. One immediately verifies that x¨, ¨y is linear in the second argument,
conjugate-symmetric, and positive definite. Hence x¨, ¨y is a complex inner product which we some-
times call the standard hermitian inner product on Cn. Its associated norm is again the euclidean
norm, so by completeness of Cn – R2n with respect to the euclidean norm one obtains the claim.

(c) The set

`2 “

#

pzkqkPN P CN

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“0

|zk|
2 ă 8

+

of square summable sequences of complex numbers is a complex Hilbert space with inner product

x¨, ¨y : `2 ˆ `2 Ñ C,
`

pzkqkPN, pwkqkPN
˘

ÞÑ

8
ÿ

k“0

zkwk .

To prove this one needs to first verify that `2 is a subvector space of CN. For z “ pzkqkPN P CN

denote by }z} the extended norm
b

ř8
k“0 |zk|

2 “ sup
KPN

b

řK
k“0 |zk|

2 P r0,8s. Then z P `2 if and

only if }z} ă 8. Now let a P C and z P `2 and compute

}az} “

g

f

f

e

8
ÿ

k“0

|azk|2 “ |a|

g

f

f

e

8
ÿ

k“0

|zk|2 “ |a| ¨ }z} ă 8 .

Hence az P `2. If z, w P `2, denote for each K P N by zpKq and wpKq the “cut-off” vectors
pz0, . . . , zKq P CK`1 and pw0, . . . , wKq P CK`1, respectively. By the triangle inequality for the norm
on the Hilbert space CK`1 one concludes

g

f

f

e

K
ÿ

k“0

|zk ` wk|2 “ }zpKq ` wpKq} ď }zpKq} ` }wpKq} ď }z} ` }w} ă 8 .

Therefore, the sequence of partial sums
řK
k“0 |zk ` wk|

2, K P N, is bounded, so convergent by the
the monotone convergence theorem. One obtains

}z ` w} “ lim
KÑ8

g

f

f

e

K
ÿ

k“0

|zk ` wk|2 ď }z} ` }w} ă 8 .
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Hence z ` w is square summable and `2 a vector subspace of CN indeed. Note that our argument
also shows that the restriction of the extended norm to `2 is a norm.

We need to show that x¨, ¨y is well-defined. To this end it suffices to prove that for all z, w P `2 the
family pzkwkqkPN is absolutely summable or in other words that

ř8
k“0 |zkwk| ă 8. One concludes

by the Hölder inequality for sums

K
ÿ

k“0

|zkwk| “
K
ÿ

k“0

|zkwk| ď }zpKq} }wpKq} ď }z} }w} .

So the left hand side has an upper bound uniform in K which by the monotone convergence theorem
entails convergence of the partial sums and the estimate

8
ÿ

k“0

|zkwk| ď }z} }w} ă 8 .

By definition it is clear that x¨, ¨y is linear in the second argument, conjugate-symmetric and positive
definite, hence a complex inner product. Note that the norm associated to x¨, ¨y coincides with the
above defined map } ¨ }.

It remains to be shown that `2 is complete. Let pznqnPN with zn “ pznk qkPN P `
2 for all n P N be a

Cauchy sequence in `2. For ε ą 0 choose Nε P N so that

}zn ´ zm} ă ε for all n,m ě Nε .

For each fixed k P N one therefore has

|znk ´ z
m
k | ď }z

n ´ zm} ă ε for all n,m ě Nε . (A.3.1.8)

By completeness of C there exist zk P C such that limnÑ8 z
n
k “ zk for all k P N. We claim that

z “ pzkqkPN is an element of `2 and that pznqnPN converges to z. To verify this observe that for all
ε ą 0, K P N and n ě Nε

K
ÿ

k“0

|zk ´ z
n
k |

2 “ lim
mÑ8

K
ÿ

k“0

|zmk ´ z
n
k |

2 ď sup
měNε

K
ÿ

k“0

|zmk ´ z
n
k |

2 ď sup
měNε

}zm ´ zn}2 ď ε2 .

This implies by the triangle inequality and the fact that the Cauchy sequence pznqnPN is bounded in
norm by some C ą 0 that for all K P N and N “ N1

g

f

f

e

K
ÿ

k“0

|zk|2 “ }zpKq} ď }zpKq ´ z
N
pKq} ` }z

N
pKq} ď }zpKq ´ z

N
pKq} ` }z

N} ď 1` C .

Hence }z} “
b

ř8
k“0 |zk|

2 ď 1` C and z P `2. In addition one obtains

}z ´ zn} “ lim
KÑ8

g

f

f

e

K
ÿ

k“0

|zk ´ z
n
k |

2 ď ε for all n ě Nε .

This means that z is the limit of the sequence pznqnPN and `2 is complete.
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(d) Denote by λ the Lebesgue measure and let

L2pRdq “

#

f : Rd Ñ C

ˇ

ˇ

ˇ

ˇ

ˇ

f is Lebesgue measurable and }f}2 :“

d

ż

Rd
|f |2dλ ă 8

+

be the space of Lebesgue square integrable functions on Rd. Then L2pRdq is a linear subspace of the
space of all measurable functions by Minkowski’s inequality which reads

}f ` g}p ď }f}p ` }g}p for all measurable f, g : Rd Ñ C .

Hereby, }f}p denotes for p P r1,8 the Lp-seminorm
`ş

Rd |f |
pdλ

˘1{p of a measurable function f :
Rd Ñ C. Note that }f}p can attain the value 8, namely when f is not in the space LppRdq. By
Hölder’s inequality, the product fg is Lebesgue integrable for f, g P L2pRdq and one has the estimate

ż

Rd
|fg|dλ “ }fg}1 ď }f}2 }g}2 .

Hence the map

x¨, ¨y : L2pRdq ˆ L2pRdq Ñ C, pf, gq ÞÑ
ż

Rd
fg dλ

is well-defined and a positive semidefinite hermitian form on L2pRdq. By construction, the associated
seminorm is the L2-seminorm } ¨ }2. Modding out L2pRdq by the kernel

N :“ Kerp} ¨ }2q “

"

f P L2pRdq
ˇ

ˇ

ˇ

ˇ

ż

Rd
|f |2dλ “ 0

*

gives the Lebesgue space
L2pRdq :“ L2pRdq{N .

The hermitian form x¨, ¨y vanishes on NˆL2pRdq and L2pRdqˆN by the Cauchy–Schwarz inequality,
hence descends to a hermitian form

x¨, ¨y : L2pRdq ˆ L2pRdq Ñ C, pf `N, g `Nq ÞÑ

ż

Rd
fg dλ .

That hermitian form is positive definite, since xf ` N, f ` Ny “ 0 means
ş

Rd |f |
2dλ “ 0, hence

f P N. Let us show that L2pRdq is complete with respect to the L2-norm } ¨ }2 induced by the inner
product. Note that on the quotient space } ¨ }2 is a norm indeed by construction. So let pfn`NqnPN
be a Cauchy sequence in L2pRdq. Choose a subsequence pfnkqkPN such that

}fnk ´ fnk´1
}2 ă

1

2k
for all k P Ną0

and put

gnpxq “
n
ÿ

k“1

|fnkpxq ´ fnk´1
pxq| for x P Rd and n P N .

The limit function
g : Rd Ñ r0,8s, x ÞÑ lim

nÑ8
gnpxq “ lim inf

nÑ8
gnpxq
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then exists even though it might not be finite everyhwere. Minkowski’s inequality for the L2-norm
entails that }gn}2 ď 1 for all n P N, hence g is measurable and }g}2 ď lim infnÑ8 }gn}2 ď 1 by
Fatou’s lemma. Therefore, gpxq is finite for all x up to a set Z Ă Rd of measure 0, and for those x
the series with partial sums gnpxq converges absolutely. For all x P RdzZ the limit

fpxq “ lim
kÑ8

fnkpxq “ fn0 ` lim
kÑ8

k
ÿ

j“1

pfnj pxq ´ fnj´1pxqq

therefore exists in C. Put fpxq “ 0 for all x P Z, and let χZ : Rd Ñ R be the characteristic function
of Z. Then the sequence of functions pχZfnkqkPN converges pointwise to f , and each of the functions
χZfn is measurable, actually even square integrable. Since

|χZfnk | ď |χZfn0 | ` gk ď |χZfn0 | ` g for all k P N

and since |χZfn0 | ` g is square integrable by Minkowski’s inequality, the pointwise limit f is square
integrable by Lebesgue’s dominated convergence theorem, and f ` N is in L2pRdq. It remains to
show that pfn ` NqnPN converges to f ` N in the norm } ¨ }2. To this end let ε ą 0 and choose
N P N such that }fn ´ fm}2 ă ε for n,m ě N . By Fatou’s lemma one obtains

ż

Rd
|fn ´ f |

2dλ ď lim inf
mÑ8

ż

Rd
|fn ´ fm|

2dλ ď ε2 for all n ě N .

Hence limnÑ8 }fn´f}2 “ 0, and L2pRdq endowed with the inner product x¨, ¨y is a Hilbert space. It
is called the Hilbert space of square-integrable functions on Rd. Note that for every complete measure
space pΩ, µq one obtains in the same way the Hilbert space L2pΩ, µq of square-integrable functions
on pΩ, µq.

3.1.10 Theorem Let V be a normed K-vector space. Then the norm } ¨ } : V Ñ Rě0 is associated
to an inner product x¨, ¨y : V ˆV Ñ K if and only if the parallelogram identity

}v ` w}2 ` }v ´ w}2 “ 2}v}2 ` 2}w}2

holds true for all v, w P V. In this case, the inner product of two elements v, w P V can be expressed
by the polarization identity for K “ R

xv, wy “
1

4

`

}v ` w}2 ´ }v ´ w}2
˘

“
1

2

`

}v ` w}2 ´ }v}2 ´ }w}2
˘

(A.3.1.9)

respectively by the polarization identity for K “ C

xv, wy “
1

4

4
ÿ

k“1

ik }w ` ik v}2 . (A.3.1.10)

Proof. The forward direction is a consequence of 3.1.4, Eq. A.3.1.3. To show the backward direction
we consider two cases K “ R and K “ C separately.

1. Case. Given the norm } ¨ } define x¨, ¨y : V ˆV Ñ R by real polarization

xv, wy “
1

4

`

}v ` w}2 ´ }v ´ w}2
˘

, where v, w P V .
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Note that the parallelogram identity entails

1

4

`

}v ` w}2 ´ }v ´ w}2
˘

“
1

2

`

}v ` w}2 ´ }v}2 ´ }w}2
˘

.

Observe that by definition xv, wy “ xw, vy and }v} “
a

xv, vy. Let us show additivity in the first
variable. Let v1, v2, w P V and compute using the parallelogram identity

}v1 ` v2 ` w}
2 “ 2}v1 ` w}

2 ` 2}v2}
2 ´ }v1 ` w ´ v2}

2 ,

}v1 ` v2 ` w}
2 “ 2}v2 ` w}

2 ` 2}v1}
2 ´ }v2 ` w ´ v1}

2 .

Hence

}v1 ` v2 ˘ w}
2 “ }v1 ˘ w}

2 ` }v2 ˘ w}
2 ` }v1}

2 ` }v2}
2 ´ }v1 ˘ w ´ v2}

2 ´ }v2 ˘ w ´ v1}
2 .

Subtracting the ´ version from the ` version of this equation entails

xv1 ` v2, wy “
1

4

`

}v1 ` v2 ` w}
2 ´ }v1 ` v2 ´ w}

2
˘

“

“
1

4

`

}v1 ` w}
2 ` }v2 ` w}

2 ´ }v1 ´ w}
2 ´ }v2 ´ w}

2
˘

“ xv1, wy ` xv2, wy ,

so additivity in the first variable is proved. By induction one derives from this that for all natural n

xnv,wy “ nxv, wy for all v, w P V . (A.3.1.11)

Since then x´nv,wy ´ nxv, wy “ x´nv ` nv,wy “ 0 for all n P N, Eq. (A.3.1.11) also holds for
n P Z. Now let p P Z and q P Ną0. Then q xpqv, wy “ xpv, wy “ p xv, wy, hence one has for rational
r

xrv, wy “ rxv, wy for all v, w P V . (A.3.1.12)

Since addition, multiplication by scalars and the norm are continuous, the function

RÑ R, r ÞÑ xrv, wy ´ rxv, wy “
1

4

`

}rv ` w}2 ` r}v ´ w}2 ´ }rv ´ w}2 ´ r}v ` w}2
˘

is continuous. Since it vanishes over Q, it has to coincide with the zero map. Therefore, Eq. (A.3.1.12)
holds for all r P R. So x¨, ¨y is linear in the first coordinate. By symmetry, it is so too in the second
coordinate. Hence x¨, ¨y is a symmetric bilinear form inducing } ¨ }.

2. Case. In the case K “ C use complex polarization and put

xv, wy “
1

4

4
ÿ

k“1

ik }w ` ik v}2 for all v, w P V .

Then x¨, ¨y is conjugate-symmetric, since

xv, wy “
1

4

4
ÿ

k“1

p´ iqk }w ` ik v}2 “
1

4

4
ÿ

k“1

p´ iqk }p´ iqk w ` v}2 “ xw, vy .

Next compute

Re xv, wy “
1

4

`

}w ` v}2 ´ }w ´ v}2
˘
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and
Im xv, wy “

1

4

`

}w ` iv}2 ´ }w ´ iv}2
˘

.

By the first case one concludes that Rex¨, ¨y and Imx¨, ¨y are both R-linear in the first and the second
coordinate. Moreover,

Re xv, iwy “
1

4

`

} iw ` v}2 ´ } iw ´ v}2
˘

“
1

4

`

}w ´ iv}2 ´ }w ` iv}2
˘

“ ´Im xv, wy “ Re ixv, wy

and
Im xv, iwy “

1

4

`

} iw ` iv}2 ´ } iw ´ iv}2
˘

“ Re xv, wy “ Im ixv, wy ,

hence x¨, ¨y is complex linear in the second coordinate. Finally,

Re xv, vy “ }v}2 and Im xv, vy “
1

4

`

}v ` iv}2 ´ }v ´ iv}2
˘

“ 0 .

This finishes the proof that x¨, ¨y is a complex inner product inducing the norm } ¨ }.

3.1.11 Next we will turn Hilbert spaces into a category. To this end one needs to know what
morphisms in this category should be. There are two options each giving rise to a category of Hilbert
spaces. These categories just differ by their morphism classes. The first one is to have as morphisms
linear maps A : H1 Ñ H2 preserving the inner products which means that they fulfill

xAv1, Av2y “ xv1, v2y for all v1, v2 P H1 .

By Theorem 3.1.10 this property is equivalent to

}Av} “ }v} for all v P H1 ,

that is to A being norm preserving or isometric. Obviously, the identity map on a Hilbert space is
isometric and the composition of two composable isometric linear maps is again isometric and linear.
Hence Hilbert spaces together with norm preserving linear maps between them form a category which
we denote by Hilbnp. The isomorphisms in this category are the surjective isometric linear maps
between Hilbert spaces. Such maps are called unitary. The condition of a linear map being norm
preserving is pretty restrictive, so the category Hilbnp contains only few morphisms. This can be
cured by allowing all bounded linear maps between Hilbert spaces to be morphisms that is of all linear
A : H1 Ñ H2 for which there exists a C ě 0 such that

}Av} ď C}v} for all v P H1 . (A.3.1.13)

The existence of a smallest such C is guaranteed by the following. It is called the operator norm of
A and is denoted }A}.

3.1.12 Lemma The operator norm of a bounded linear operator A : H1 Ñ H2 between Hilbert
spaces H1 and H2 exists and is given by

}A} “ sup
 

}Av}
ˇ

ˇ v P H1, }v} “ 1
(

“ sup
 

}Av}
ˇ

ˇ v P H1, }v} ď 1
(

“ sup
 

|xw,Avy|
ˇ

ˇ v P H1, w P H2, }v} “ }w} “ 1
(

.
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Proof. If A : H1 Ñ H2 is bounded, then the set
 

}Av}
ˇ

ˇ v P H1, }v} “ 1
(

is bounded, hence has a
supremum C0. This implies that for all non-zero v P H1

}Av} “ }v}

›

›

›

›

A

ˆ

v

}v}

˙›

›

›

›

ď C0}v} .

Hence the estimate (A.3.1.13) holds true for C “ C0. Moreover, C0 is the smallest such C because if
0 ď C1 ă C0, then there exists v P H1 with }v} “ 1 and }Av} ą C1. This proves that the operator
norm of A exists and that it fulfills }A} “ C0.

By definition of C0, the estimate }A} “ C0 ď sup
 

}Av}
ˇ

ˇ v P H1, }v} ď 1
(

holds true. By definition
of the operator norm, }Av} ď }A} for all v P H1 with }v} ď 1. The two estimates together entail
the equality }A} “ sup

 

}Av}
ˇ

ˇ v P H1, }v} ď 1
(

.

The Cauchy–Schwarz inequality entails

sup
 

|xw,Avy|
ˇ

ˇ v P H1, w P H2, }v} “ }w} “ 1
(

ď }A} .

The converse estimate follows by the observation that

sup
 

|xw,Avy|
ˇ

ˇ w P H2, }w} “ 1
(

ě

ˇ

ˇ

ˇ

A Av

}Av}
, Av

Eˇ

ˇ

ˇ
“ }Av}

whenever Av ‰ 0. This proves the last claimed equality.

Every norm preserving linear map is bounded with operator norm 1. In particular, the identity map
on a Hilbert space is bounded. Moreover, if A : H1 Ñ H2 and B : H2 Ñ H3 are bounded linear
operators between Hilbert spaces, then the composition BA : H1 Ñ H3 is bounded with operator
norm ď }B} }A} since for all v P H1 with }v} ď 1

}BAv} ď }B} }Av} ď }B} }A} .

Hence Hilbert spaces as objects together with bounded linear maps as morphisms form a category
which we denote by Hilb and call the category of Hilbert spaces. Note that the morphisms in this
category appear to “forget” the inner product and just preserve the linear and the topological structure.
John Baez (Baez, 1997, p. 133) has explained how to heal this apparent defect by showing that Hilb
carries a so-called ˚-structure given by the adjoint map on bounded linear operators. We will come
back to this point later when we introduce adjoint operators.

As proved already for Banach spaces, a linear map between Hilbert spaces is bounded if and only if it
is continuous. For reasons of completeness and convenience we state here the result for inner product
spaces.

3.1.13 Proposition Let A : H1 Ñ H2 be a linear map between two inner product spaces. Then the
following are equivalent.

(i) A is bounded.

(ii) A is continuous.

(iii) A is continuous at 0.
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Proof. (i) ùñ (ii). Assume that A is bounded. Let }A} :“ supvPH1
}Av} be its norm. Then, for

all v, w P H1

}Av ´Aw} ď }A} ¨ }v ´ w} .

Hence A is Lipschitz continuous, so in particular continuous.
(ii) ùñ (iii). If the map A is continuous, it is in particular continuous at the origin.
(iii) ùñ (i). If A is continuous at the origin, there exists δ ą 0 such that for all v P H1 the estimate
}Av} ă 1 holds whenever }v} ă δ. This implies that for v with }v} ď 1

}Av} “ 2δ

›

›

›

›

A

ˆ

1

2δ
v

˙›

›

›

›

ă 2δ .

This means that A is bounded.

3.1.14 Last in this section we will introduce bounded bilinear and sesquilinear maps. We define them
for normed vector spaces. Their main application lies in the operator theory on Hilbert spaces, so we
introduce them here.

3.1.15 Definition Let V1 and V2 be two normed vector spaces over K and denote the norms on V1

and V2 by the same symbol } ¨ }. Assume that b : V1ˆV2 Ñ K is a bilinear or sesquilinear form that
is b is linear in each argument respectively b is conjugate linear in the first and linear in the second
argument. The form b : V1 ˆV2 Ñ K then is called bounded if there exists a C ą 0 such that

|bpv, wq| ď C }v} }w} for all v P V1, w P V2 .

In this case,
}b} :“ sup

 

|bpv, wq|
ˇ

ˇ v P V1, w P V2, }v} “ }w} “ 1
(

exists and is called the norm of the form b.

3.1.16 Example The inner product on a (pre-) Hilbert space is bounded by the Cauchy–Schwarz
inequality and has norm 1.

3.1.17 Proposition A bilinear or sesquilinear form b : V1ˆV2 Ñ K defined on the cartesian product
of two normed vector space V1 and V2 over K is bounded if and only if it is continuous.

Proof. If b is bounded, then
ˇ

ˇbpv, wq ´ bpv1, w1q
ˇ

ˇ ď
ˇ

ˇbpv, wq ´ bpv1, wq
ˇ

ˇ`
ˇ

ˇbpv1, wq ´ bpv1, w1q
ˇ

ˇ ď

ď }b}
`

}w} }v ´ v1} ` }v1} }w ´ w1}
˘

for all v, v1 P V1 and w,w1 P V2. Hence b is locally Lipschitz continuous, so in particular continuous.

Conversely, assume now that b is continuous. Then one can find δ ą 0 such that for all v P V1 and
w P V2 of norm less than δ the relation |bpv, wq| ă 1 holds true. But that entails for all non-zero
v, w

|bpv, wq| “
4 }v} }w}

δ2
¨ b

ˆ

δ
v

2}v}
, δ

w

2}w}

˙

ď
4

δ2
}v} }w} .

Hence b is bounded.
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3.1.18 Remark Given two normed vector spaces or more generally two topological vector spaces V1

and V2 one can consider bilinear or sesquilinear forms b : V1 ˆ V2 Ñ K which are only separately-
continuous. That means that for all v P V1 the map bv “ bpv,´q : V2 Ñ K and for all w P V2 the
map bw “ bp´, wq : V1 Ñ K is continuous. In general, separate-continuity is strictly weaker than
continuity unless the underlying vector spaces are Banach spaces where the two notions coincide as
a consequence of the Banach–Steinhaus theorem. Let us prove this. By continuity of bv there exist
Cv ě 0 such that |bvpwq| ď Cv }w} for all w P V2 and Cw ě 0 such that |bwpvq| ď Cw }v} for all
v P V1. Hence, for all w P V2

sup
vPV, }v}ď1

|bvpwq| “ sup
vPV, }v}ď1

|bwpvq| ď Cw ă 8 .

The Banach–Steinhaus theorem now entails

sup
v,wPV, }v}, }w}ď1

|bpv, wq| “ sup
vPV, }v}ď1

}bv} ă 8 .

Therefore, b is bounded, so continuous by the preceding proposition.

A.3.2. Orthogonal decomposition and the Riesz representation
theorem

3.2.1 One of the issues with infinite-dimensional analysis is that a closed subspace of an infinite
dimensional Banach space might not have a closed complement. Fortunately, the situation in Hilbert
space theory is not so grim because every closed subspace of a Hilbert space admits an orthogonal
complement. This is one of the four crucial properties which distinguish Hilbert spaces from Banach
spaces and which are stated in the following.

In this section H will always denote a Hilbert space over the field K “ R or K “ C. The symbol
x¨, ¨y will stand for the inner product of H.

3.2.2 Theorem (Best approximation theorem) Every closed convex nonempty subset C of a Hilbert
space H has a unique element of minimal norm.

Proof. Let d “ inft}v} | v P Cu which is a non-negative real number. We claim there exists a unique
v0 P C with }v0} “ d. For uniqueness, consider two vectors v0, v1 satisfying the desired property, and
let v “ 1

2pv0 ` v1q be their midpoint. Then

}v} “
1

2
}v0 ` v1} ď

1

2
p}v0} ` }v1}q “ d

By minimality of d this entails }v} “ d. By the parallelogram identity
›

›

›

›

1

2
pv0 ` v1q

›

›

›

›

2

`

›

›

›

›

1

2
pv0 ´ v1q

›

›

›

›

2

“ 2
›

›

›

v0

2

›

›

›

2
` 2

›

›

›

v1

2

›

›

›

2
“ d2 ,

hence
›

›

›

›

1

2
pv0 ´ v1q

›

›

›

›

2

ď d2 ´ }v}2 “ 0 ,
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proving v0 “ v1.

For the proof of existence observe that by definition of d there exists a sequence pvnqnPN Ă C such
that limnÑ8 }vn} “ d. By convexity

1

2
pvn ` vmq P C

for all n,m P N, hence 1
4}vn ` vm}

2 ě d2. The parallelogram equality entails

0 ď }vn ´ vm}
2 “ 2}vn}

2 ` 2}vm}
2 ´ }vn ` vm}

2 ď 2}vn}
2 ` 2}vm}

2 ´ 4d2 .

Since limnÑ8 }vn} “ d there exists for given ε ą 0 an N P N such that }vn}2 ´ d2 ď 1
4ε

2 for all
n ě N . Hence, for n,m ě N

0 ď }vn ´ vm} ď ε ,

and pvnqnPN is a Cauchy-sequence, so convergent by completeness of H. Put v0 :“ limnÑ8 vn. Then
v0 P C since C is closed and }v0} “ limnÑ8 }vn} “ d. The existence claim follows and the proof is
finished.

3.2.3 Theorem and Definition (Orthogonal decomposition theorem) Let V Ă H be a closed
subspace of the Hilbert space H. Then the orthogonal complement

VK “
 

w P H
ˇ

ˇ xv, wy “ 0 for each v P V
(

is a closed subspace of H and H “ V ‘ VK. The map prV : H Ñ V which maps w P H to
the unique w1 P V such that w ´ w1 P VK is called the orthogonal projection onto V. It satisfies
}w ´ prVpwq} “ dpw,Vq :“ inf

 

}v´w}
ˇ

ˇ v P V
(

that is prVpwq is the unique element of V having
shortest distance from w.

Proof. For v P H define v5 : H Ñ R by v5pwq “ xw, vy. Recall that this map is continuous and
linear. Hence the kernel pv5q´1p0q is a closed linear subspace of H and

VK “
č

vPV

pv5q´1p0q (A.3.2.1)

is a closed linear subspace. To show V X VK “ t0u, consider v P V X VK. Then }v}2 “ xv, vy “ 0.
Next we want to show that every w P H can be written in the form w “ w1 ` w2 with w1 P V and
w2 P VK. To see this put C “ w ´ V. Then C is closed and convex. By the best approximation
theorem there exists a unique element w2 P C of minimal norm. Let w1 be the unique element of
V such that w2 “ w ´ w1. It remains to show w2 P VK. Since w2 has minimal norm among the
elements of w ´V, the following inequality holds for all vectors v P V:

}w2}
2 ď }w2 ` v}

2 “ }w2}
2 ` 2Rexw2, vy ` }v}

2 .

Hence
0 ď 2Rexw2, vy ` }v}

2 for all v P V .

Now assume that }v} “ 1 and choose ϕ P R such that eiϕxw2, vy P R. Setting v1 “ eiϕv, one obtains
for all λ P R by the last inequality

0 ď 2xw2, λv
1y ` }λv1}2 “ 2λxw2, v

1y ` λ2 .
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For λ “ ´xw2, v
1y this entails the estimate

|xw2, v
1y|2 “ ´

`

´2|xw2, v
1y|2 ` |xw2, v

1y|2
˘

“ ´
`

2λxw2, v
1y ` λ2

˘

ď 0 .

Hence xw2, vy “ 0 for all unit vectors v P V, therefore w2 P VK.

The remainder of the claim is now an immediate consequence of the construction of w1 from the
given w and the observation that prVpwq “ w1.

3.2.4 Corollary For every subspace V Ă H of a Hilbert space H the orthogonal complement V K is
closed, and the relation

V K “ V
K

holds true. Moreover,
V “ pV KqK .

Proof. By Equation (A.3.2.1), the orthogonal complement V K is closed. Since V Ă V the inclusion
V
K
Ă V K holds true. The converse inclusion V K Ă V

K follows from the observation that if w P V K

and pvnqnPN is a sequence in V converging to some v P V , then

xw, vy “ lim
nÑ8

xw, vny “ 0 .

This proves the equality V K “ V
K. The inclusion V Ă pV KqK “ pV KqK is immediate by definition

of the orthogonal complement. Since

H “ V ‘ V K “ pV KqK ‘ V K

by the preceding theorem, the equality V “ pV KqK follows.

3.2.5 Theorem (Riesz representation theorem for Hilbert spaces) Let H be a Hilbert space
and H1 its topological dual. Then the musical map

5 : HÑ H1, v ÞÑ v5 “ pH Q w ÞÑ xv, wy P Kq

is an isometric isomorphism which is linear in the real case and conjugate-linear in the complex case.

Proof. Obviously, 5 is linear if the ground field K equals R and conjugate-linear if K “ C. Now
observe that for all v P H by the Cauchy–Schwarz inequality

}v5} “ sup
 

|xv, wy|
ˇ

ˇ w P H & }w} “ 1
(

“ }v} ,

hence 5 is an isometry, so in particular injective. It remains to show surjectivity. So assume that
α : H Ñ K is a nontrivial continuous linear form. Let V be its kernel. Then V is a closed linear
subspace of H. Since α is nontrivial, the orthogonal complement VK is nontrivial, too. Hence
VK – H{V is isomorphic to imα “ K and there exists a vector v P VKzt0u such that αpvq “ 1.
Since v spans VK there exists for every w P H a unique λw P K such that w “ prV pwq`λwv. Then
compute

αpwq “ αpλwvq “ λw and
ˆ

v

}v}2

˙5

pwq “
1

}v}2
xv, wy “

λw
}v}2

xv, vy “ λw .

This entails α “
´

v
}v}2

¯5

, and 5 is surjective.
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3.2.6 Remark Sometimes in the Hilbert space literature the inverse of the musical isomorphism
5 : HÑ H1 is denoted 7 : H1 Ñ H. We will follow that convention.

3.2.7 Corollary Every Hilbert space H is reflexive that is the canonical map

H Ñ H2, v ÞÑ
`

H 1 Q λ ÞÑ λpvq P K
˘

is an isometric isomorphism.

Proof. By the Riesz Representation Theorem, the dual H1 is a Hilbert space with inner product

xx¨, ¨yy : H1 ˆH1 Ñ K, pλ, µq ÞÑ xxλ, µyy “ xµ7, λ7y .

Hence, by applying the Riesz Representation Theorem twice, the map 5 ˝ 5 : HÑ H2 is an isometric
linear isomorphism. Now compute for v P H and λ P H1

pv5q5pλq “ xxv5, λyy “ xλ7, vy “ λpvq .

Hence 5 ˝ 5 coincides with the canonical map above and the claim follows.

3.2.8 Corollary Let H1 and H2 be two Hilbert spaces and b : H1ˆH2 Ñ K a bounded sesquilinear
form. Then there exists unique bounded linear map A : H2 Ñ H1 such that

bpv, wq “ xv,Awy for all v P H1, w P H2 . (A.3.2.2)

Moreover, the operator norm }A} coincides with }b}.

Proof. First let us show uniqueness. So let A,B : H2 Ñ H1 be bounded and linear so that

bpv, wq “ xv,Awy “ xv,Bwy for all v P H1, w P H2 .

Then }pA´Bqw}2 “ xpA´Bqw,Aw´Bwy “ bppA´Bqw,wq´bppA´Bqw,wq “ 0 for all w P H2

which entails equality of A and B.

To prove existence observe that for every w P H2 the map

bw : H1 Ñ K, v ÞÑ bpw, vq :“ bpv, wq

is bounded and linear, so by the Riesz representation theorem there exists for every w a unique element
Aw P H1 such that xAw, vy “ bpw, vq for all v P H1. By construction, Aw “ pbwq7. Since the maps
H2 Ñ H1

1, w ÞÑ bw and 7 : H1
1 Ñ H1 are both conjugate-linear, A is linear. Hence A is the desired

linear operator fulfilling Equation (A.3.2.2).

For the operator norm compute

}A} “ sup
 

|xv,Awy|
ˇ

ˇ v P H1, w P H2, }v} “ }w} “ 1
(

“

“ sup
 

|bpv, wq|
ˇ

ˇ v P H1, w P H2, }v} “ }w} “ 1
(

“ }b} .

Hence A is bounded with operator norm equal to }b} and the claim is proved.
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3.2.9 Last in this section we will examine the Hilbert direct sum or just Hilbert sum of a family
pHiqiPI of Hilbert spaces. It is defined by

x

à

iPI

Hi “

#

pviqiPI P
ź

iPI

Hi

ˇ

ˇ

ˇ

`

}vi}
2
˘

iPI
is summable

+

“

“

#

pviqiPI P
ź

iPI

Hi

ˇ

ˇ

ˇ
DC ě 0@J P PfinpIq :

ÿ

iPJ

}vi}
2 ď C

+

,

where, as usual, PfinpIq denotes the set of all finite subsets of I.

3.2.10 Proposition Let pHiqiPI be a family of Hilbert spaces. Then the Hilbert direct sum x

À

iPI

Hi is

a Hilbert space with inner product given by

x´,´y : x
à

iPI

Hi ˆ
x

à

iPI

Hi Ñ K, ppviqiPI , pwiqiPIq ÞÑ
ÿ

iPI

xvi, wiy .

Proof. We show first that x
À

iPI

Hi is a subvector space of the direct product
ś

iPI Hi. Let z P K and

pviqiPI , pwiqiPI P x

À

iPI

Hi. Choose C,D ě 0 such that

ÿ

iPJ

}vi}
2 ď C and

ÿ

iPJ

}wi}
2 ď D for all J P PfinpIq .

Then
ÿ

iPJ

}zvi}
2 “ |z|

ÿ

iPJ

}vi}
2 ď |z|C for all J P PfinpIq , (A.3.2.3)

so pzviqiPI P x

À

iPI

Hi. Moreover, by Minkowski’s inequality for finite sums,

ÿ

iPJ

}vi ` wi}
2 ď

¨

˝

d

ÿ

iPJ

}vi}2 `

d

ÿ

iPJ

}wi}2

˛

‚

2

ď

´?
C `

?
D
¯2

for all J P PfinpIq . (A.3.2.4)

Hence the family
`

}vi ` wi}
2
˘

iPI
is summable and pvi ` wiqiPI P

x

À

iPI

Hi.

Next observe that the map

›

›´
›

› : x
à

iPI

Hi Ñ K, pviqiPI ÞÑ
›

›pviqiPI
›

› “

d

ÿ

iPI

}vi}2

is well-defined by definition of the Hilbert direct sum. It is even a norm by (A.3.2.3) and (A.3.2.4).

Now we need to show that the inner product on x

À

iPI

Hi is well-defined which means that the family

pxvi, wiyqiPI is summable for all pviqiPI , pwiqiPI P x

À

iPI

Hi. To this end let J Ă I be a finite subset.
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Then, by the triangle inequality, the Cauchy–Schwarz inequality on the Hilbert spaces Hi and the
Cauchy–Schwarz inequality for finite sums,

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPJ

xvi, wiy

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

iPJ

|xvi, wiy| ď
ÿ

iPJ

}vi} }wi} ď

d

ÿ

iPJ

}vi}2 ¨

d

ÿ

iPJ

}wi}2 ď
›

›pviqiPI
›

›

›

›pwiqiPI
›

› .

Hence the family pxvi, wiyqiPI is absolutely summable, so in particular summable, and the inner
product is well-defined.

By definition and since all the inner products on the Hilbert spaces Hi are conjugate symmetric
and positive definite, the map x´,´y on x

À

iPI

Hi has to be conjugate symmetric and positive def-

inite as well. It remains to show linearity in the second argument. Denote for pviqiPI , pwiqiPI P
ś

iPI Hi and J P PfinpIq by xpviqiPI , pwiqiPIyJ the finite sum
ř

iPJxvi, wiy. Observe that the net
`

xpviqiPI , pwiqiPIyJ
˘

JPPfinpIq
converges to xpviqiPI , pwiqiPIy in case both pviqiPI and pwiqiPI are in

x

À

iPI

Hi. Now let z P K and pviqiPI , pwiqiPI , pw1iqiPI P x

À

iPI

Hi. Then

xpviqiPI , pwiqiPI ` pw
1
iqiPIyJ “ xpviqiPI , pwiqiPIyJ ` xpviqiPI , pw

1
iqiPIyJ and

xpviqiPI , zpwiqiPIyJ “ zxpviqiPI , pwiqiPIyJ .

By convergence of all the nets
`

xpviqiPI , pwiqiPIyJ
˘

JPPfinpIq
, linearity in the second argument follows.

By construction, the norm associated to the inner product x´,´y on x

À

iPI

Hi coincides with the above

defined norm
›

›´
›

›. It remains to show that x
À

iPI

Hi equipped with the norm
›

›´
›

› is complete. To this

end observe that for every finite J Ă I the map

›

›´
›

›

J
:
ź

iPI

Hi Ñ Rě0, pviqiPI ÞÑ
a

xpviqiPI , pviqiPIyJ “

d

ÿ

iPJ

}vi}2

is a seminorm and that pviqiPI P
ś

iPI Hi lies in the Hilbert direct sum x

À

iPI

Hi if and only if the family
`
›

›pviqiPI
›

›

J

˘

JPPfinpIq
is bounded. Now let ppvni qiPIqnPN be a Cauchy sequence. Let ε ą 0 and choose

Nε P N such that
›

›pvmi qiPI ´ pv
n
i qiPI

›

› ă ε for all n,m ě Nε . (A.3.2.5)

Then
›

›pvmi qiPI ´ pv
n
i qiPI

›

›

J
ă ε for all J P PfinpIq and n,m ě Nε . (A.3.2.6)

Taking J “ tju for j P I this implies that the sequence pvnj qnPN is a Cauchy sequence in the Hilbert

space Hj . Let vj P Hj be its limit. The family pviqiPI then is an element of x
À

iPI

Hi. To verify this

put N “ N1 and observe that by (A.3.2.6) for all finite J Ă I

›

›pviqiPI
›

›

J
ď

›

›pvNi qiPI
›

›

J
`
›

›pviqiPI ´ pv
N
i qiPI

›

›

J
“

“
›

›pvNi qiPI
›

›

J
` lim
mÑ8

›

›pvmi qiPI ´ pv
N
i qiPI

›

›

J
ď

›

›pvNi qiPI
›

›` 1.
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Hence the family
`›

›pviqiPI
›

›

J

˘

JPPfinpIq
is bounded and pviqiPI lies in the Hilbert direct sum of the

spaces Hi, i P I. Moreover, (A.3.2.6) entails that
›

›pviqiPI ´ pv
n
i qiPI

›

›

J
“ lim

mÑ8

›

›pvmi qiPI ´ pv
n
i qiPI

›

›

J
ď ε for all J P PfinpIq and n ě Nε .

Since
›

›pviqiPI ´ pv
n
i qiPI

›

› is the limit of the net
`
›

›pviqiPI ´ pv
n
i qiPI

›

›

J

˘

JPPfinpIq
, the estimate

›

›pviqiPI ´ pv
n
i qiPI

›

› ď ε for all n ě Nε

follows, and the sequence ppvni qiPIqnPN convergences to pviqiPI . This finishes the proof.

A.3.3. Orthonormal bases in Hilbert spaces

3.3.1 Definition A (possibly empty) subset S of a Hilbert space H is called an orthogonal system
or just orthogonal if for any two different elements v, w P S the relation xv, wy “ 0 holds true. If in
addition }v} “ 1 for all elements v P S, then the set is called orthonormal or an orthonormal system.
A family pviqiPI of vectors in H is called orthogonal if xvi, vjy “ 0 for all i, j P I with i ‰ j and
orthonormal if in addition }vi} “ 1 for all i P I.

3.3.2 Obviously, the set of orthonormal subsets of a Hilbert space is ordered by set-theoretic inclusion.
Therefore, the following definition makes sense.

3.3.3 Definition A maximal orthonormal set in a Hilbert space H is called an orthonormal basis or
a Hilbert basis of H.

3.3.4 Proposition Every Hilbert space H has an orthonormal basis.

Proof. Wothout loss of generality we can assume that H ‰ t0u, because H is a Hilbert basis for t0u.
Let O denote the set of orthonormal subsets of H. As mentioned before, O is ordered by set-theoretic
inclusion. Let C Ă O be a non-empty chain. Put U “

Ť

SPC S. Then U is an upper bound of C. So
by Zorn’s lemma O has a maximal element.

3.3.5 Remark (a) By slight abuse of language we sometimes call an orthonormal family pbiqiPI in a
Hilbert space H an orthonormal basis or a Hilbert basis of H if the set tbi | i P Iu is an orthornormal
basis.

(b) If on an orthonormal basis B Ă H a total order relation is given, one calls B an ordered Hilbert
basis of H. Likewise, an orthonormal basis of the form pbiqiPI is called ordered if the index set I
carries a total order.

3.3.6 Proposition (Pythagorean theorem for orthogonal families) An orthogonal family pviqiPI
in a Hilbert space H is summable if and only if the family of norms p}vi}qiPI is square summable. In
this case one has

›

›

›

ÿ

iPI

vi

›

›

›

2
“

ÿ

iPI

}vi}
2 .
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Proof. Assume that p}vi}qiPI is square summable or in other words that the net of partial sums
`
ř

iPJ }vi}
2
˘

JPPfinpIq
converges to some s P R. For ε ą 0 choose a finite Jε Ă I such that for all

finite J with Jε Ă J Ă I the relation
ˇ

ˇ

ˇ
s´

ÿ

iPJ

}vi}
2
ˇ

ˇ

ˇ
ă
ε2

2

holds true. For finite K Ă I with K X Jε “ H one then obtains by the pythagorean theorem for
finite orthogonal families, Eq. (A.3.1.2),

›

›

›

ÿ

iPK

vi

›

›

›

2
“

ÿ

iPK

}vi}
2
ď

ˇ

ˇ

ˇ
s´

ÿ

iPKYJε

}vi}
2
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
s´

ÿ

iPJε

}vi}
2
ˇ

ˇ

ˇ
ă ε2 .

Hence p
ř

iPJ viqJPPfinpIq is a Cauchy net in H, so convergent.

Now let pviqiPI be summable to v P H. Then there exists a J1 P PfinpIq such that for all finite J Ă I
containing J1

›

›

›
v ´

ÿ

iPJ

vi

›

›

›
ď 1 .

This implies by the pythagorean theorem for finite orthogonal families

ÿ

iPJ

}vi}
2
“

›

›

›

ÿ

iPJ

vi

›

›

›

2
ď

˜

›

›

›
v ´

ÿ

iPJ

vi

›

›

›
` }v}

¸2

ď p1` }v}q2 .

Therefore, the net of partial sums
`
ř

iPJ }vi}
2
˘

JPPfinpIq
is bounded, so convergent since each term

}vi}
2 is non-negative.

By continuity of the inner product and pairwise orthogonality of the vi one finally obtains in the
convergent case

›

›

›

ÿ

iPI

vi

›

›

›

2
“

A

ÿ

iPI

vi,
ÿ

jPI

vj

E

“
ÿ

iPI

A

vi,
ÿ

jPI

vj

E

“
ÿ

iPI

ÿ

jPI

xvi, vjy “
ÿ

iPI

}vi}
2 .

3.3.7 Proposition Let pviqiPI be an orthonormal family in a Hilbert space H. Then for every v P H
the family pxvi, vyqiPI is square summable and Bessel’s inequality holds true that is

ÿ

iPI

|xvi, vy|
2
ď }v}2 .

Proof. Let J Ă I be finite. Then, by the pythagorean theorem for finite orthogonal families

0 ď
›

›

›
v ´

ÿ

iPJ

xvi, vyvi

›

›

›

2
“ }v}2 ´ 2

ÿ

iPJ

|xvi, vy|
2 `

›

›

›

ÿ

iPJ

xvi, vyvi

›

›

›

2
“ }v}2 ´

ÿ

iPJ

|xvi, vy|
2 .

Therefore, for all J P PfinpIq
ÿ

iPJ

|xvi, vy|
2
ď }v}2 . (A.3.3.1)

Hence, by Proposition 1.5.9, the family p|xvi, vy|qiPI is square summable. Bessel’s inequality now
follows from the observation that in Equation (A.3.3.1) one can pass over to the limit of the net
´

ř

iPJ |xvi, vy|
2
ď }v}2

¯

JPPfinpIq
.
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3.3.8 Theorem Let B be an orthonormal system in a Hilbert space H. Then the following are
equivalent:

(1) The orthonormal system B is maximal, i.e. a Hilbert basis.

(2) The orthonormal system B is total that is for all v P H such that xv, by “ 0 for all b P B the
equality v “ 0 holds true.

(3) For every b P B let Hb “ trb P H | r P Ku. Then the canonical map

ι : x

à

bPB

Hb Ñ H, pvbqbPB ÞÑ
ÿ

bPB

vb

is an isometric isomorphism.

(4) The closed linear span of B coincides with H.

(5) For all v P H, one has the Fourier expansion

v “
ÿ

bPB

xv, byb .

(6) For all v, w P H, one has
xv, wy “

ÿ

bPB

xv, byxb, wy .

(7) For all v P H, Parseval’s identity holds true that is

}v}2 “
ÿ

bPB

|xv, by|2 .

Proof. (1) ñ (2): If v ‰ 0, then v
}v} is a unit vector orthogonal to each vi. Hence tvu Y B is an

orthonormal system which is strictly larger than B, contradicting (1).

(2) ñ (3). First note that by the pythagorean theorem for infinite families, Proposition 3.3.6, the
canonical map ι : x

À

bPBHb Ñ H is well-defined and an isometry. Hence ι is injective. It remains to
show that ι is surjective. To this end observe that im ι is closed in H since ι is an isometry (the image
is complete). If ι is not surjective, then im ιK is not the zero vector space. Choose v P im ιKzt0u.
Then v is orthogonal to each element of B, but v ‰ 0. This contradicts (2), so im ι “ H.

(3) ñ (5): We can represent any v P H in the form v “ ι ppvbqbPBq “
ř

bPB vb with pvbqbPB P

x

À

bPBHb. Write vb “ rb b for every b P B, where rb P K is uniquely determined by vb. Then compute
using continuity of the inner product

xv, by “ x
ÿ

cPB

vc, by “
ÿ

cPB

rcxc, by “ rb .

Therefore,
v “

ÿ

bPB

rb b “
ÿ

bPB

xv, byb .

105



A.3. Hilbert Spaces A.3.4. The monoidal structure of the category of Hilbert spaces

(5) ñ (6): Fourier expansion of v, w P H gives v “
ř

bPB

xv, byb and w “
ř

bPB

xw, byb. Then, by

continuity of the inner product,
xv, wy “

ÿ

bPB

xv, byxb, wy .

(5) ñ (4): Let v P H. Then
ř

bPJ

xv, byb P SpanpBq for all finite J Ă B. By Fourier expansion v is

the limit of the net
ˆ

ř

bPJ

xv, byb

˙

JPPfinpBq

, so v lies in the closure ĘSpanpBq.

(4) ñ (2): Assume that xv, by “ 0 for all b P B. By (4), v can be written as a limit v “ lim
nÑ8

vn,

where vn P SpanpBq for all n P N. Then xv, vny “ 0 for all n P N by assumption. By continuity of
the inner product this implies

}v}2 “ lim
nÑ8

xv, vny “ 0 ,

so v “ 0.

(6) ñ (7): Put v “ w. Then, by assumption,

}v}2 “ xv, vy “
ÿ

bPB

xv, byxb, vy “
ÿ

bPB

|xv, by|2 .

(7)ñ (1): Assume (7) and that (1) is not true. Then there exists v P H with }v} “ 1 and xv, by “ 0
for all b P B. But then

}v}2 “
ÿ

bPB

|xv, by|2 “ 0,

which is a contradiction.

A.3.4. The monoidal structure of the category of Hilbert spaces

3.4.1 Let K be the field of real or complex numbers. Hilbert spaces over K together with bounded
K-linear maps between them form a category denoted by K-Hilb or just Hilb if no confusion can arise.
This can be seen immediately by observing that the identity map 1H on a Hilbert space is a bounded
linear operator and that the composition B ˝A : H1 Ñ H3 of two bounded linear operators between
Hilbert spaces A : H1 Ñ H2 and B : H2 Ñ H3 is again a bounded linear operator. We want to
endow the category Hilb with a bifunctor pb : Hilb ˆ Hilb Ñ Hilb so that it becomes a monoidal
category. The (bi)functor pb will be called the Hilbert tensor product.

Unless mentioned differently, Hilbert spaces, vector spaces and the algebraic tensor product b in this
section are assumed to be taken over the ground field K.

3.4.2 Proposition Let H1 and H2 be two Hilbert spaces. Then there exists a unique inner product
x¨, ¨y : pH1 bH2q ˆ pH1 bH2q Ñ K on the algebraic tensor product H1 bH2 such that

xv1 b v2, w1 b w2y “ xv1, w1y ¨ xv2, w2y for all v1, w1 P H1, v2, w2 P H2 . (A.3.4.1)
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Proof. Let us first provide some preliminary constructions. Recall that for every pair of vector spaces
V1 and V2 the bilinear map

τ : HompV1,Kq ˆHompV2,Kq Ñ HompV1 bV2,Kq,
pλ1, λ2q ÞÑ

`

V1 bV2 Ñ K, v1 b v2 ÞÑ λ1pv1q ¨ λ2pv2q
˘

induces a linear map

pτ : HompV1,Kq bHompV2,Kq Ñ HompV1 bV2,Kq

by the universal property of the tensor product. This map is an isomorphism. To see this choose
a basis pv1iqiPI of V1 and a basis pv2jqjPJ of V2. Let pv11iqiPI and pv12jqjPJ denote the respective

dual bases of V 11 and V 12 . Then
´

v11i b v
1
2j

¯

pi,jqPIˆJ
is a basis of HompV1,Kq b HompV2,Kq which

under pτ is mapped bijectively to the basis ppv1i b v2jq
1q
pi,jqPIˆJ of HompV1 b V2,Kq dual to the

basis pv1i b v2jqpi,jqPIˆJ of V1 b V2. Hence pτ is a linear isomorphism as claimed, and we can
identify the tensor product λ1 b λ2 of two linear functionals λi : Vi Ñ K, i “ 1, 2 with its image in
HompV1 bV2,Kq.

Now observe that for two conjugate-linear maps µ1 : V1 Ñ K and µ2 : V2 Ñ K the map τ˚pµ1, µ2q “

µ1 b µ2 : V1 bV2 Ñ K is conjugate-linear and satisfies

τ˚pµ1, µ2q pv1 b v2q “ µ1pv1q ¨ µ2pv2q for all v1 P V1, v2 P V2 . (A.3.4.2)

One obtains a map

τ˚ : Hom˚pV1,Kq ˆHom˚pV2,Kq Ñ Hom˚pV1 bV2,Kq ,

where here the symbol Hom˚pV,Kq denotes the space of all conjugate linear functionals on a vector
space V. Since τ˚ is biadditive and since τ˚pzµ1, µ2q “ τ˚pµ1, zµ2q for all µ1 P Hom˚pV1,Kq,
µ2 P Hom˚pV2,Kq, and z P K, the map τ˚ factors through a linear map

xτ˚ : Hom˚pV1,Kq bHom˚pV2,Kq Ñ Hom˚pV1 bV2,Kq .

Using the above bases pv1iqiPI and pv2jqjPJ of V1 and V2 respectively, one observes that xτ˚ is an

isomorphism since it maps the basis
´

v11i b v
1
2j

¯

pi,jqPIˆJ
of Hom˚pV1,KqbHom˚pV2,Kq bijectively

to the basis
´

pv1i b v2jq
1

¯

pi,jqPIˆJ
of the space Hom˚pV1bV2,Kq. Soxτ˚ is also a linear isomorphism,

which allows us to identify the tensor product µ1bµ2 of two conjugate linear functionals µi : Vi Ñ K,
i “ 1, 2 with its image in Hom˚pV1 bV2,Kq.

After these preliminary considerations we consider the map

H1 ˆH2 Ñ Hom˚pH1 bH2,Kq, pw1, w2q ÞÑ w51 b w
5
2 “ τ˚

´

w51, w
5
2

¯

“xτ˚
´

w51 b w
5
2

¯

,

which is well-defined and bilinear since the musical isomorphisms 5 : Hl Ñ H1
l, w ÞÑ xw,´y, l “ 1, 2,

are conjugate-linear and since τ˚ is bilinear. Hence it factors through a linear map

β : H1 bH2 Ñ Hom˚pH1 bH2,Kq
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such that

βpw1 b w2qpv1 b v2q “ xv1, w1y ¨ xv2, w2y for all v1, w1 P H1, v2, w2 P H2 . (A.3.4.3)

Now put
x¨, ¨y : pH1 bH2q ˆ pH1 bH2q Ñ K, pv, wq ÞÑ xv, wy :“ βpwqpvq .

Then x¨, ¨y is sesquilinear by construction, and (A.3.4.1) holds true by (A.3.4.3).

Let us show that x¨, ¨y is positive definite. Let v “
řn
k“1 v1kbv2k P H1bH2. Choose an orthonormal

basis e1, . . . , em of the linear subspace spanned by v21, . . . , v2n. Expand v2k “
řm
i“1 ckiei with

ck1, . . . , ckm P K. Then

v “
n
ÿ

k“1

v1k b v2k “

n
ÿ

k“1

m
ÿ

i“1

v1k b pckieiq “
m
ÿ

i“1

˜

n
ÿ

k“1

ckiv1k

¸

b ei “
m
ÿ

i“1

w1i b ei , (A.3.4.4)

where w1i “
řn
k“1 ckiv1k. Hence

xv, vy “ x
m
ÿ

i“1

w1i b ei,
m
ÿ

j“1

w1j b ejy “
m
ÿ

i“1

m
ÿ

j“1

xw1i, w1jy xei, ejy “
m
ÿ

i“1

}w1i}
2 ě 0 . (A.3.4.5)

Moreover, if xv, vy “ 0, then w1i “ 0 for i “ 1, . . . ,m, which implies v “
řm
i“1w1i b ei “ 0. So

x¨, ¨y is an inner product on H1bH2 satisfying (A.3.4.1). It is uniquely determined by this condition
since the vectors v1 b v2 with v1 P H1 and v2 P H2 span H1 bH2.

3.4.3 Definition Let H1 and H2 be Hilbert spaces. The Hilbert completion of the algebraic tensor
product H1 b H2 equipped with the unique inner product x¨, ¨y fulfilling (A.3.4.1) will be denoted
H1 pbH2, its inner product again by x¨, ¨y. One calls the Hilbert space

`

H1 pbH2, x¨, ¨y
˘

the Hilbert
tensor product of H1 and H2 or just the tensor product of H1 and H2 if no confusion can arise.

3.4.4 Proposition Let H1 and H2 be Hilbert spaces.

(i) Let A1 Ă H1 and A2 Ă H2 be subsets which are total H1 and H2, respectively. Then the set of
simple vectors a1b a2 with a1 P A1 and a2 P A2 is total in the Hilbert tensor product H1 pbH2.

(ii) If peiqiPI and pfjqjPJ are orthonormal bases of H1 and H2, respectively, then pei b fjqpi,jqPIˆJ
is an orthonormal basis of the Hilbert tensor product H1 pbH2.

Proof. ad (i ). Recall that a subset A Ă H or a family A “ pajqjPJ of elements of a Hilbert space
H is called total in H if the linear span of A is dense in H. By density of the algebraic tensor
product H1 b H2 in the Hilbert tensor product H1 pbH2, the set of simple tensors v1 b v2 with
pv1, v2q P H1 ˆH2 is total in H1 pbH2. Hence it suffices to find for each such pair pv1, v2q and all
ε ą 0 vectors w1 P SpanA1 and w2 P SpanA2 such that

}v1 b v2 ´ w1 b w2} ă
ε

2
.

By totality of Ai in Hi there exist wi P SpanAi for i “ 1, 2 such that

}v1 ´ w1} ă min

"

1,
ε

2p}v2} ` 1q

*

and }v2 ´ w2} ă
ε

2p}v1} ` 1q
.

Then
}v1 b v2 ´ w1 b w2} ď }v1 ´ w1} }v2} ` }v2 ´ w2}}w1} ă ε .
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ad (ii ). The family pei b fjqpi,jqPIˆJ is orthonormal by definition of the inner product on H1 pbH2.
It is total by (i) and therefore a Hilbert basis.

3.4.5 Proposition Assigning to each pair of Hilbert spaces H1 and H2 the Hilbert tensor product
H1 pbH2 and to each pair of bounded linear operators A1 : H1 Ñ H3 and A2 : H2 Ñ H4 between
Hilbert spaces the unique bounded extension A1 pbA2 : H1 pbH2 Ñ H3 pbH4 of the operator A1 b

A2 : H1 bH2 Ñ H3 pbH4, v1 b v2 ÞÑ A1pv1q bA2pv2q comprises a (covariant) bifunctor

pb : Hilbˆ Hilb Ñ Hilb .

Moreover, pb is isometric in the sense that

}v1 b v2} “ }v1} }v2} for all v1 P H1, v2 P H1 and (A.3.4.6)

}A1 pbA2} “ }A1} }A2} for all A1 P BpH1,H3q, A2 P BpH2,H4q . (A.3.4.7)

Proof. We first show that A1 b A2 is a bounded operator. To this end observe that A1 b A2 can
be written as the composition of the two operators A1 b 1H2 and 1H3 b A2. Hence it suffices to
show that each of these linear maps is bounded. Let v “

řn
k“1 v1k b v2k P H1 bH2 be of norm 1.

As in the proof of Proposition 3.4.2 expand v2k “
řm
i“1 ckiei, k “ 1, . . . , n, where e1, . . . , em is an

orthonormal basis of Spantv21, . . . , v2nu and ck1, . . . , ckm P K. Equations (A.3.4.4) and (A.3.4.5)
then entail that

v “
m
ÿ

i“1

w1i b ei and 1 “ xv, vy “
m
ÿ

i“1

}w1i}
2

where w1i “
řn
k“1 ckiv1k for i “ 1, . . . ,m. Hence

}pA1 b 1H2qv}
2 “

›

›

›

›

›

m
ÿ

i“1

A1pw1iq b ei

›

›

›

›

›

2

“

m
ÿ

i“1

}A1pw1iq}
2 ď }A1}

2
m
ÿ

i“1

}w1i}
2 “ }A1}

2 ,

so A1 b 1H2 is bounded with norm ď }A1}. By symmetry, 1H3 bA2 is bounded with norm ď }A2}.
Hence A1 bA2 “ p1H3 bA2q ˝ pA1 b 1H2q is bounded and

}A1 bA2} ď }A1} }A2} .

Therefore, A1 bA2 has a unique bounded extension A1 pbA2 of norm

}A1 pbA2} “ }A1 bA2} ď }A1} }A2} .

Let us show that the converse inequality holds as well. For given ε ą 0 there exist unit vectors
vi P Hi, i “ 1, 2 such that }Aivi} ě }Ai} ´ ε

2p}A1}`}A2}`1q . Then

}pA1 bA2qpv1 b v2q} “ }A1v1} }A2v2} ě }A1} }A2} ´ ε .

This implies
}A1 pbA2} “ }A1 bA2} ě }A1} }A2}

and (A.3.4.7) follows. Equality (A.3.4.6) is clear by construction of the Hilbert tensor product.

Next observe that 1H1
pb1H2 “ 1H1 pbH2

by definition. Given Hilbert spacesH1, . . . ,H6 and bounded
linear operators Ai : Hi Ñ Hi`2 and Bi : Hi`2 Ñ Hi`4 for i “ 1, 2, the composition pB1 b B2q ˝
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pA1 bA2q coincides with pB1 ˝A1q b pB2 ˝A2q by functoriality of the algebraic tensor product. By
continuity of the operators A1 pbA2 and B1 pbB2 and by density of H1bH2 in H1 pbH2 the equality

pB1 pbB2q ˝ pA1 pbA2q “ pB1 ˝A1q pbpB2 ˝A2q

follows. Hence pb is a bifunctor as claimed.

3.4.6 Proposition For every Hilbert space H one has two natural isomorphisms

puH : K pbHÑ H, z b v Ñ zv and Hpu : H pbKÑ H, v b z Ñ zv

called the left and the right unit, respectively. Furthermore, for every triple of Hilbert spaces
H1,H2,H3 there is a natural isomorphism, called associator

paH1,H2,H3 : pH1 pbH2q pbH3 Ñ H1 pbpH2 pbH3q, pv1 b v2q b v3 ÞÑ v1 b pv2 b v3q .

These data fulfill the so-called coherence conditions that is the pentagon diagram

ppH1 pbH2q pbH3q pbH4

pH1 pbpH2 pbH3qq pbH4

H1 pbppH2 pbH3q pbH4q H1 pbpH2 pbpH3 pbH4qq

pH1 pbH2q pbpH3 pbH4q

paH1,H2,H3
pb 1H4

paH1,H2 pbH3,H4

1H1
pb paH2,H3,H4

paH1,H2,H3 pbH4

paH1 pbH2,H3,H4

and the triangle diagram

pH1 pbKq pbH2 H1 pbpK pbH2q

H1 pbH2

paH1,K,H3

H1
pu pb 1H2

1H1
pb puH2

commute for all Hilbert spaces H1,H2,H3,H4. In other words, the category Hilb endowed with the
Hilbert tensor product pb is a monoidal category.

Proof. The category of K-vector spaces with the usual tensor product as tensor functor is monoidal.
Denote the corresponding unit isomorphisms and associator by ´u, u´, and a´,´,´, respectively.
Then observe that by construction K pbH “ K bH and H pbK “ H b K for every Hilbert space
H. In particular this means that puH coincides with the unit uH and Hpu with the unit Hu. Moreover,
both units puH and Hpu are bounded. Next recall that H1 b H2 is dense in H1 pbH2 which by
Proposition 3.4.4 implies density of pH1 b H2q b H3 and H1 b pH2 b H3q in pH1 pbH2q pbH3

and H1 pbpH2 pbH3q, respectively. Similarly one argues that H1 b pH2 b pH3 bH4qq is dense in
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H1 pbpH2 pbpH3 pbH4qq, and so on. Since the associator map aH1,H2,H3 : pH1 b H2q b H3 Ñ

H1 b pH2 b H3q is bounded, it extends in a unique way to a linear bounded map paH1,H2,H3 :
pH1 pbH2q pbH3 Ñ H1 pbpH2 pbH3q. Using density, continuity, and commutativity of the pentagon
and triangle diagrams for the tensor product functor one concludes that the coherence conditions for
pb with the unit and associator maps ´pu, pu´, and pa´,´,´ are satisfied.

A.3.5. Adjoints of bounded operators

3.5.1 As before, the symbols H and Hk with k “ 1, 2 always stand for Hilbert spaces over the field
K of real or complex numbers. Several results of this section hold only in the complex case, thouhgh.
Therefore we will be quite precise in stating all necessary assumptions, in particular about the ground
field.

Let A P BpH1,H2q that is let A : H1 Ñ H2 be linear and bounded. Then the map

bA : H1 ˆH2 Ñ K, pv, wq ÞÑ xAv,wy

is sesquilinear and bounded with norm

}bA} “ sup
 

|bApv, wq|
ˇ

ˇ v P H1, w P H2, }w} “ }v} “ 1
(

“ }A} .

By Corollary 3.2.8 to the Riesz representation theorem there exists a unique bounded linear operator
A˚ : H2 Ñ H1 such that

bApv, wq “ xv,A
˚wy for all v P H1, w P H2 .

This operator satisfies
}A˚} “ }bA} “ }A} . (A.3.5.1)

3.5.2 Definition The unique operator A˚ P BpH2,H1q associated to an operator A P BpH1,H2q

such that
xAv,wy “ xv,A˚wy for all v P H1, w P H2

is called the adjoint of A.

The fundamental property of the adjoint operation is given by the following result.

3.5.3 Proposition The adjoint map ˚ : BpH1,H2q Ñ BpH2,H1q is a conjugate linear isometry
whose square coincides with the identity operation that is A˚˚ “ A for all A P BpH1,H2q.

Proof. By the proof of Corollary 3.2.8, A˚w “ xw,Ap´qy7 for all w P H2. Since the inner product
is linear in the second argument and the operator 7 conjugate linear, the map A ÞÑ A˚ is conjugate
linear in A. By Equation (A.3.5.1), the adjoint map is an isometry. The relation A˚˚ “ A follows by
uniqueness of the adjoint and since

xA˚w, vy “ xw,Avy for all v P H1, w P H2 .
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3.5.4 Definition An operator A P BpHq is called self-adjoint if A “ A˚, unitary if A˚ “ A´1, and
normal if rA,A˚s :“ AA˚ ´A˚A “ 0.

We note that self-adjoint and unitary operators are always normal, but normal operators do not have
to be self-adjoint or unitary. In the remainder of this section, we gather several results on self-adjoint
and normal operators.

3.5.5 Proposition Assume that the ground field K of the Hilbert space H is the field of complex
numbers. An operator A P BpHq then is self-adjoint if and only if xAv, vy P R for all v P H.

Proof. (ñ) If A is self-adjoint, then

xAv, vy “ xv,A˚vy “ xv,Avy “ xAv, vy ,

which implies that xAv, vy P R.

(ð) Suppose that xAv, vy P R for all v P H. We know

xApv ` wq, v ` wy “ xAv, vy ` xAv,wy ` xAw, vy ` xAw,wy . (A.3.5.2)

By assumption, xApv ` wq, v ` wy, xAv, vy, and xAw,wy are all real. This implies that the sum
xAv,wy ` xAw, vy is real as well, so

Im xAv,wy “ ´Im xAw, vy “ Im xv,Awy .

Since this holds for all w P H, it holds for iw, too. Thus,

Re xAv,wy “ Im ixAv,wy “ Im xAv, iwy “ Im xv,Ap iwqy “ Im ixv,Awy “ Re xv,Awy .

Combining the above two lines yields xAv,wy “ xv,Awy for all v, w P H. By uniqueness of the
adjoint this implies that A “ A˚.

3.5.6 Proposition Assume that the ground field K of the Hilbert space H is the field of complex
numbers and let A P BpHq. If xAv, vy “ 0 holds for all v P H, then A “ 0.

Proof. Since xAv, vy “ 0 for all v P H, equation (A.3.5.2) from the proof of Proposition 3.5.5 reduces
to

xAv,wy “ ´xAw, vy “ ´xw,Avy “ ´xAv,wy for all v, w P H .

That means that xAv,wy has no real part for all v, w P H. But then fixing v and setting w “ Av
implies }Av}2 “ 0 for all v P H, so A “ 0.

3.5.7 Example The preceding proposition does not hold in the real case. To see this take rotation
by π

2 :

R “

ˆ

cos π2 ´ sin π
2

sin π
2 cos π2

˙

Then xRv, vy “ 0 for all v P R2, but R is non-zero. Note that the example of the rotation operator
R also shows that the criterion for self-adjointness from Proposition 3.5.5 can not be applied in the
real case.
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3.5.8 Lemma (cf. (Hirzebruch & Scharlau, 1991, Lem. 22.4)) Assume that A is a bounded lin-
ear operator on the real or complex Hilbert space H for which there exists a C ě 0 such that

|xAv, vy| ď C}v}2 for all v P H .

Then
|xAv,wy ` xv,Awy| ď 2C}v}}w} for all v, w P H . (A.3.5.3)

In case H is a complex Hilbert space one even has the sharper estimate

|xAv,wy| ` |xv,Awy| ď 2C}v}}w} for all v, w P H . (A.3.5.4)

Proof. We start with the equality

xApv ` wq, v ` wy ` xApv ´ wq, v ´ wy “ 2pxAv,wy ` xAw, vyq . (A.3.5.5)

By assumption and the parallelogram identity (A.3.1.3) this entails

2|xAv,wy ` xAw, vy| ď C
`

}v ` w}2 ` }v ´ w}2
˘

“ 2C
`

}v}2 ` }w}2
˘

. (A.3.5.6)

The claim obviously holds for v “ 0 or w “ 0, so we assume from now on that both v and w are
non-zero. Then put a “

b

}v}
}w} and replace in (A.3.5.6) v by v

a and w by aw. One obtains

|xAv,wy ` xAw, vy| ď C

ˆ

›

›

›

v

a

›

›

›

2
`

›

›

›
aw

›

›

›

2
˙

“ 2C}v}}w}

which is the claim in the real case. If H is a complex Hilbert space, let x, y be complex numbers of
modulus 1. In the just proven estimate multiply the left side with |x| and replace w with yw. This
gives

ˇ

ˇxyxAv,wy ` xyxAw, vy
ˇ

ˇ “ |x| ¨ |xAv, ywy ` xApywq, vy| ď 2C}v}}w} . (A.3.5.7)

Now write xAv,wy “ re iϕ and xAw, vy “ se iψ with r, s ě 0 and ϕ,ψ P R. Then put

x “ e´ i 1
2
pϕ`ψqq and y “ e´ i 1

2
pϕ´ψqq .

With these values, (A.3.5.7) becomes

|xAv,wy| ` |xv,Awy| ď 2C}v}}w}

which was to be shown.

3.5.9 Proposition If H is a Hilbert space over the field K of real or complex numbers and A P BpHq
is self-adjoint, then

}A} “ sup
}v}“1

|xAv, vy| .

Proof. We know
}A} “ sup

}v}“}w}“1
|xAv,wy| , (A.3.5.8)

so we clearly have
sup
}v}“1

|xAv, vy| ď }A} .

The other direction follows from Equation (A.3.5.8) and Lemma 3.5.8 since A is self-adjoint.
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3.5.10 Proposition If H is a real or complex Hilbert space and A P BpHq, then A˚A is self-adjoint
and }A˚A} “ }A}2.

Proof. For arbitrary v, w P H, we have

xA˚Av,wy “ xAv,Awy “ xv,A˚Awy

so A˚A is self-adjoint. Then

}A˚A} “ sup
}v}“}w}“1

|xA˚Av,wy| “ sup
}v}“}w}“1

|xAv,Awy| “ }A}2 ,

where the last equality is a consequence of the Cauchy–Schwarz inequality and the observation that
for all ε ą 0 there exists a unit vector v such that xAv,Avy ě }A}2 ´ ε.

3.5.11 Proposition Let H be a complex Hilbert space H. If A P BpHq, then there exist unique
self-adjoint B,C P BpHq such that A “ B` iC. Furthermore, A is normal if and only if rB,Cs “ 0.

Proof. We define
B “

1

2
pA`A˚q and C “

i

2
pA˚ ´Aq.

Clearly A “ B ` iC. Note also that A˚ “ B ´ iC. Furthermore, by Proposition 3.5.3

B˚ “
1

2
pA˚ `Aq “ B

and
C˚ “ ´

i

2
pA´A˚q “ C .

Hence B and C are self-adjoint, so fulfill the claim. Let us show uniqueness. Assume that B1, C 1 P
BpHq are selfadjoint and satisfy A “ B1 ` iC 1. Then

B ´B1 “ B˚ ´B1
˚
“

`

ipC 1 ´ Cq
˘˚
“ ´ ipC 1 ´ Cq “ ´pB ´B1q .

Hence B “ B1 and consequently C “ C 1. Finally, we compute

rA,A˚s “ rB ` iC,B ´ iCs “ ´ irB,Cs ` irC,Bs “ ´2 irB,Cs .

This entails that A is normal if and only if rB,Cs “ 0.

3.5.12 Proposition If A is a normal operator on a real or complex Hilbert space H, then

}Av} “ }A˚v} for all v P H .

Proof. Using the fact that A˚A “ AA˚, we compute

}Av}2 “ xAv,Avy “ xv,A˚Avy “ xv,AA˚vy “ xA˚v,A˚vy “ }A˚v}2 .

Taking the square root yields the desired result.
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A.3.6. Projection-valued measures and spectral integrals

3.6.1 In this section H will always denote a fixed complex Hilbert space.

3.6.2 Definition By a projection-valued measure or a spectral measure on a measurable space pΩ,Aq
one understands a map E : AÑ BpHq having the following properties:

(SM0) For each ∆ P A the operator Ep∆q is an orthogonal projection that is Ep∆q2 “ Ep∆q and
Ep∆q˚ “ Ep∆q.

(SM1) EpΩq “ idH.

(SM2) For every sequence p∆nqnPN of pairwise disjoint elements of A one has

E

˜

ď

nPN
∆n

¸

“ s -
8
ÿ

n“0

Ep∆nq ,

where convergence is with respect to the strong operator toplogy.

3.6.3 Remark Recall that convergence of a sequence of operators pAnqnPN Ă BpHq in the strong
operator topology to some A means that for every v P H the sequence pAnvqnPN converges in H to

Av. One denotes this by A “ s - lim
nÑ8

An. Likewise, B “ s -
8
ř

n“0
An means that the sequence of partial

sums
ˆ

n
ř

k“0

An

˙

nPN
converges in the strong operator topology to some B P BpHq.

3.6.4 Proposition A spectral measure E : A Ñ BpHq has the following properties in addition to
the defining axioms:

(SM1’) EpHq “ 0.

(SM2’) (Finite additivity) One has for all disjoint ∆1,∆2 P A

Ep∆1 Y∆2q “ Ep∆1q ` Ep∆2q .

(SM3) One has for all ∆1,∆2 P A

Ep∆1 X∆2q “ Ep∆1q ¨ Ep∆2q .

Proof. ad (SM1’).

ad (SM2’).

ad (SM3).

115



A.3. Hilbert Spaces A.3.7. Spectral theory of bounded operators

A.3.7. Spectral theory of bounded operators

3.7.1 We now apply the foundations of Hilbert space theory built in the previous sections to spectral
theory. For the moment we will sacrifice generality and work only with bounded linear operators. The
spectral theory of unbounded linear operators will be treated later.

Let us a recall that a linear map A : H1 Ñ H2 between Hilbert spaces is continuous if and only if it
is bounded, i.e. has finite operator norm, and that BpH1,H2q is a Banach space with the operator
norm. For the rest of this section, H, H1, H2, . . . will always denote complex Hilbert spaces and A,
B bounded linear operators. We will also now fix the base field to be complex, i.e. K “ C. Last we
agree on writing IH or just I for the identity operator on a Hilbert space H.

Spectrum and Resolvent

3.7.2 Definition Let A : HÑ H be a bounded linear operator. A complex number λ is then called
an eigenvalue of A if there exists a nonzero v P H such that Av “ λv. For every λ P C one defines
the λ-eigenspace of A as

EigλpAq “
 

v P H
ˇ

ˇ Av “ λv
(

Ă H,

which is clearly a linear subspace of H.

3.7.3 By definition it is immediately clear that

EigλpAq “ kerpA´ λq,

where the λ on the right stands for the operator λI. In other words this means that λ P C is an
eigenvalue of A if and only if A´ λ is not injective.

3.7.4 Definition Let A P BpHq. We make the following definitions.

(i) A regular value of A is a complex number λ such that A´ λ is invertible.

(ii) The set of all regular values is the resolvent of A, denoted %pAq.

(iii) A spectral value of A is a complex number λ such that A´ λ is not invertible.

(iv) The set of all spectral values is the spectrum of A, denoted σpAq.

(v) The point or eigenspectrum of A is the set

σppAq “
 

λ P C
ˇ

ˇ kerpA´ λq ‰ t0u
(

.

(vi) An approximate eigenvalue of A is a complex number λ for which there exists a sequence of unit
vectors pvnqnPN Ă H such that

lim
nÑ8

pA´ λqvn “ 0.

The set σappAq is the set of all approximate eigenvalues.
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3.7.5 Evidently, σpAq “ Cz%pAq and σppAq Ă σappAq Ă σpAq, and these may all be strict inclusions.
Note that A´λ is bounded for any λ P C, so the open mapping theorem ?? implies that pA´λq´1 P

BpHq when λ P %pAq. We call the map

R‚pAq : %pAq Ñ BpHq, RλpAq “ pA´ λq
´1

the resolvent of A, not to be confused with the resolvent set %pAq. To keep the notation clean, we
often briefly write Rλ for RλpAq and leave implicit that Rλ depends on A.

First, we prove some topological properties of the spectrum and resolvent. Recall the following lemma,
which generalizes the geometric series.

3.7.6 Lemma (Carl Neumann) Let A P BpHq. If }A} ă 1, then I ´A is invertible,

pI ´Aq´1 “

8
ÿ

n“0

An,

and
›

›pI ´Aq´1
›

› ď
1

1´ }A}
.

Proof. Since }A} ă 1 and }An} ď }A}n by submultiplicativity of the operator norm, we know
ř8
n“0 }A

n} ă 8. This implies that the family pAnqnPN is absolutely summable, so
ř8
n“0A

n exists.
Furthermore, for every N P N we have

pI ´Aq
N
ÿ

n“0

An “

˜

N
ÿ

n“0

An

¸

pI ´Aq “
N
ÿ

n“0

An ´
N`1
ÿ

n“1

An “ I ´AN`1,

which implies that

lim
NÑ8

pI ´Aq
N
ÿ

n“0

An “ lim
NÑ8

˜

N
ÿ

n“0

An

¸

pI ´Aq “ I.

By continuity of multiplication in BpHq one gets

pI ´Aq
8
ÿ

n“0

An “

˜

8
ÿ

n“0

An

¸

pI ´Aq “ I,

which proves that I ´A is invertible and pI ´Aq´1 “
ř8
n“0A

n.

Finally, one concludes by the triangle inequality and submultiplicativity of the operator norm

›

›pI ´Aq´1
›

› ď

8
ÿ

n“0

}An} ď
8
ÿ

n“0

}A}n “
1

1´ }A}
.

3.7.7 Proposition Let A P BpHq.

(i) For any λ P %pAq, one has
B
}Rλ}

´1pλq Ă %pAq .

Hence, %pAq Ă C is open.
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(ii) The spectrum σpAq is compact and

σpAq Ă sB}A}p0q .

(iii) If the complex number λ satisfies |λ| ą }A}, then λ P %pAq and

Rλ “ ´
1

λ
´

8
ÿ

n“1

λ´n´1An ,

where convergence is with respect to the operator norm.

Proof. ad (i ). Fix λ P %pAq and set r “ }Rλ}
´1. Let µ P Brpλq. Then

}pµ´ λqRλ} “ |µ´ λ| }Rλ} ă 1.

Thus, by Lemma 3.7.6, one knows that I ´ pµ ´ λqRλ is invertible. Since A ´ λ is invertible, the
composition

pA´ λq
`

I ´ pµ´ λqRλ
˘

“ A´ µ

is invertible, which proves that µ P %pAq. Hence %pAq is open.

ad (ii ). Since %pAq is open, the complement σpAq “ Cz%pAq is closed. Furthermore, if |λ| ą }A},
then

›

›λ´1A
›

› ă 1, so I ´ λ´1A and hence A ´ λ are invertible by Lemma 3.7.6. This implies that
λ P %pAq, so σpAq Ă sB}A}p0q. Since σpAq is closed and bounded, it is compact.

ad (iii ). If |λ| ą }A}, then I ´ λ´1A is invertible by Lemma 3.7.6 and

pI ´ λ´1Aq´1 “

8
ÿ

n“0

λ´nAn.

Since ´λpA´ λq´1 “ pI ´ λ´1Aq´1, one obtains

Rλ “ ´
1

λ

8
ÿ

n“0

λ´nAn “ ´
1

λ
´

8
ÿ

n“1

λ´n´1An,

as desired.

Next, we prove some algebraic properties of the resolvent. Hereby, rA,Bs “ AB ´ BA denotes the
commutator of two operators, as usual.

3.7.8 Proposition Let A,B P BpHq. Then the following holds true.

(i) The resolvent commutes with the operator which means that

rA,RλpAqs “ 0 for all λ P %pAq .

(ii) The values of the resolvent commute with each other that is

rRλpAq, RµpAqs “ 0 for all λ, µ P %pAq .
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(iii) (First resolvent identity) For all λ, µ P %pAq

RλpAq ´RµpAq “ pλ´ µqRλpAqRµpAq .

(iv) (Second resolvent identity) For all λ P %pAq X %pBq

RλpAq ´RλpBq “ RλpAq pB ´AqRλpBq .

Proof. ad (i ). Obviously rA,A´ λs “ 0, so

0 “ RλrA,A´ λsRλ “ RλA´ARλ,

as desired.

ad (iii ). We compute

pRλ ´RµqpA´ µqpA´ λq “ pRλA´ µRλqpA´ λq ´ pA´ λq

“ pA´ µqRλpA´ λq ´ pA´ λq

“ λ´ µ,

where we used part (i) to commute Rλ past A in the second step. Now multiplying both sides with
RλRµ from the right yields the desired equality.

ad (ii ). For λ “ µ, one obviously has rAλ, Aµs “ 0. For λ ‰ µ, one concludes from (ii)

RµRλ “
Rµ ´Rλ
µ´ λ

“
Rλ ´Rµ
λ´ µ

“ RλRµ,

so rRλ, Rµs “ 0 for λ ‰ µ as well.

ad (iv ). The last equality follows by

RλpAq pB ´AqRλpBq “ RλpAq
`

pB ´ λq ´ pA´ λq
˘

RλpBq “ RλpAq ´RλpBq .

The resolvent R‚pAq also has some nice analytic properties which we are going to prove next.

3.7.9 Proposition The resolvent R‚pAq : %pAq Ñ BpHq, λ ÞÑ Rλ is continuous and complex
differentiable with derivative given by

R‚pAq
1 : %pAq Ñ BpHq, λ ÞÑ lim

µÑλ

Rµ ´Rλ
µ´ λ

“ R2
λ

Proof. Fix λ P %pAq and ε ą 0. Let 0 ă |µ´ λ| ă δ, where

δ “ min

ˆ

ε

2 }Rλ}
2 ,

1

2 }Rλ}

˙

.

Note that µ P %pAq by Proposition 3.7.7. Moreover, }pµ´ λqRλ} ă 1, so I ´pµ´λqRλ is invertible
with norm less than p1 ´ }pµ´ λqRλ}q´1 by Lemma 3.7.6. Now observe that the first resolvent
identity can be rearranged to

Rµ “ RλrI ´ pµ´ λqRλs
´1 .
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Hence

}Rµ ´Rλ} ď |µ´ λ| }Rµ} }Rλ}

ď |µ´ λ| }Rλ}
2
›

›pI ´ pµ´ λqRλq
´1
›

›

ď
|µ´ λ| }Rλ}

2

1´ }pµ´ λqRλ}

ă
ε{2

1´ 1{2
“ ε .

This proves that λ ÞÑ Rλ is continuous.

As for complex differentiability, we simply use the first resolvent identity and continuity to conclude

lim
µÑλ

Rµ ´Rλ
µ´ λ

“ lim
µÑλ

RµRλ “ R2
λ.

3.7.10 Proposition Let A P BpHq. Then λRλ Ñ ´I as |λ| Ñ 8. In particular, Rλ Ñ 0 as
|λ| Ñ 8.

Proof. Fix ε ą 0. For |λ| ą }A}, we have by Proposition 3.7.7 (iii)

λRλ “ ´I ´
8
ÿ

n“1

λ´nAn.

Since
›

›

›

›

›

8
ÿ

n“1

λ´nAn

›

›

›

›

›

ď
}A}

|λ| ´ }A}
,

one sees that λRλ Ñ ´I as |λ| Ñ 8. Similarly, for |λ| ą }A} one has

}Rλ} ď
1

|λ|
`

1

|λ|

8
ÿ

n“1

›

›λ´nAn
›

› ď
1

|λ|
`

1

|λ|

}A}

|λ| ´ }A}
,

which shows that Rλ Ñ 0 as |λ| Ñ 8.

3.7.11 Proposition For all v, w P H, the map

xR‚pAqv, wy : %pAq Ñ C, λ ÞÑ xRλv, wy

is holomorphic with derivative

xR‚pAqv, wy
1 : %pAq Ñ C, λ ÞÑ xR2

λv, wy.

Proof. Given λ P %pAq, we compute

lim
µÑλ

xRµv, wy ´ xRλv, wy

µ´ λ
“ lim

µÑλ

xpµ´ λqRµRλv, wy

µ´ λ
“ lim

µÑλ
xRµRλv, wy “ xR

2
λv, wy,

where we have used the first resolvent identity in the first step and continuity of the inner product in
the last.
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3.7.12 Proposition The spectrum of an operator A P BpHq is nonempty.

Proof. Suppose σpAq “ H, hence %pAq “ C. The map

CÑ C, λ ÞÑ xRλv, wy

then is entire for every v, w P H. Furthermore, one has for }v} , }w} ď 1

|xRλv, wy| ď }Rλ} }v} }w} ď }Rλ} .

Since λ ÞÑ }Rλ} is continuous and }Rλ} Ñ 0 as |λ| Ñ 8, one sees that }Rλ} is bounded. Hence
xR‚v, wy is a bounded entire function, which by Liouville’s theorem implies that it is zero for every
pair v, w P H with }v} “ }w} “ 1. This entails that Rλ “ 0 for every λ P C, which is a contradiction
to Rλ being invertible. Hence σpAq ‰ H.

A.3.8. Unbounded linear operators

3.8.1 In this section let V,W always denote Banach spaces over the field K “ R or K “ C. The
symbols H, H1, ... will always stand for Hilbert spaces over K.

3.8.2 Definition By an unbounded K-linear operator or shortly by an unbounded operator from V
to W we understand a linear map A : DompAq Ñ W defined on a K-linear subspace DompAq Ă V.
As usual, DompAq is called the domain of the operator A. The space of unbounded K-linear operators
from V to W will be denoted LKpV,W q or just LpV,W q.

3.8.3 Remark In this work, the term “unbounded” is meant in the sense of “not necessarily bounded”.
Sometimes we just say linear operator or even only operator instead of “unbounded linear operator”.

3.8.4 Observe that besides the domain DompAq of an unbounded operator A P LpV,Wq the kernel

KerpAq “
 

v P V
ˇ

ˇ Av “ 0
(

Ă V ,

the image
ImpAq “

 

w P W
ˇ

ˇ Dv P DompAq : w “ Av
(

Ă W ,

and the graph
GrpAq “

 

pv, wq P DompAq ˆW
ˇ

ˇ w “ Av
(

Ă V ˆW

of A are all linear subspaces. We will frequently make use of this.

3.8.5 Definition An unbounded operator A P LpV,Wq is called densely defined if DompAq is dense
in V, and closed if the graph GrpAq is closed in VˆW. The operator A P LpV,W q is called closable
if the closure ĞGrpAq is the graph of an unbounded operator from V to W.

An operator A P LpV,W q is called an extension of B P LpV,W q if GrpBq Ă GrpAq. One writes in
this situation B Ă A.
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A.4.1. Infinite tensor products

4.1.1 Infinite tensor products of Hilbert spaces were introduced by von Neumann (1939). They were
motivated by mathematical physics where one needs to describe quantum systems with infinitely many
degrees of freedom, see e.g. Emch (2009); Bratteli & Robinson (1997). The original construction
of infinite tensor products was generalized to von Neumann and C˚-algebras by Guichardet (1966),
Blackadar (1977), and others. Meanwhile, the topic has been studied in quite some detail in the
operator algebra literature, see e.g. Nakagami (1970a,b); Størmer (1971). A purely algebraic or
better categorical approach allowing the construction of infinite tensor products of modules over a
given commutative ring has been given in (Chevalley, 1956, Sec. III.10). The work Ng (2013) is also
in that spirit. We will essentially follow Chevalley (1956) and construct the infinite tensor product as
a module universal with respect to multilinear maps. First we present the main algebraic construction,
then we explain some of the subtleties which distinguish infinite from finite tensor products, and finally
we construct infinite Hilbert tensor products and infinite tensor products of C˚-algebras.

4.1.2 Let R be a commutative ring and pMiqiPI a possibly infinite family of R-modules. Consider
ś

iPIMi, the product of the family pMiqiPI within the category of R-modules. For each j P I let
πj :

ś

iPIMi Ñ Mj denote the natural projection onto the j-th factor and ιj : Mj ãÑ
ś

iPIMi the
uniquely determined natural embedding such that

πj ˝ ιi “

#

idMi for i “ j and
0 else.

Given an R-module N one then understands by a multilinear map from
ś

iPIMi to N a map f :
ś

iPIMi Ñ N such that for each j P I and x P
ś

iPIMi with πjpxq “ 0 the map Mj Ñ N ,
m ÞÑ fpιjpmq ` xq is linear. The set of multilinear maps from

ś

iPIMi to N will be denoted by
Mlin

`
ś

iPIMi, N
˘

. It carries a natural structure of an R-module given by pointwise addition of
multilinear maps and pointwise action of a scalar on a multilinear map that is by

f ` g “

˜

ź

iPI

Mi Q x ÞÑ fpxq ` gpxq P N

¸

and rf “

˜

ź

iPI

Mi Q x ÞÑ rfpxq P N

¸

for all f, g P Mlin
`
ś

iPIMi, N
˘

and r P R. Since for j P I and x P
ś

iPIMi with πjpxq “ 0
the maps Mj Ñ N , m ÞÑ pf ` gqpιjpmq ` xq “ fpιjpmq ` xq ` gpιjpmq ` xq and Mj Ñ N ,
m ÞÑ rfpιjpmq ` xq are linear by assumption on f and g, the maps f ` g and rf are multilinear
again, so Mlin

`
ś

iPIMi, N
˘

is an R-module indeed with zero element the constant function mapping
to 0 P N .
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4.1.3 Remarks Before proceeding further let us make several explanations concerning the notation
used.

(a) The space of multilinear maps Mlin
`
ś

iPIMi, N
˘

actually depends on the family pMiqiPI and
the R-module N , so in principle one should write Mlin

`

pMiqiPI , N
˘

instead of Mlin
`
ś

iPIMi, N
˘

.
Nevertheless we stick to the latter notation since it is closer to standard notation for linear maps and
since it will not lead to any confusion.

(b) In case the index set I has just two elements i1, i2, one calls a multilinear map
ś

iPIMi “

Mi1 ˆMi2 Ñ N a bilinear map. If the cardinality of I is 3, one sometimes calls a multilinear map
ś

iPIMi Ñ N a trilinear map.

(c) In the following, when saying that pIaqaPA is a partition of the set I we mean that each Ia is a
non-empty subset of I, that Ia X Ib “ H for a ‰ b and that

Ť

aPA Ia “ I. The empty family is
regarded as a partition of the empty set.

(d) We will frequently use in this section the same symbol for maps with the same “universal” properties
despite those maps might be strictly speaking different. For example, πk will stand for the canonical
projections

ś

iPIMi Ñ Mk and
ś

jPJMj Ñ Mk whenever k P J Ă I. Likewise we use the same
notation for the two canonical embeddings Mk ãÑ

ś

iPIMi and Mk ãÑ
ś

jPJMj defined in 4.1.2
and denote them both by ιk.

4.1.4 Lemma (cf. (Chevalley, 1956, Sec. III.10, Lemma 1 & 2)) Assume that pMiqiPI is a fam-
ily of R-modules, N an R-module, and f :

ś

iPIMi Ñ N a mutilinear map.

(i) If g : N Ñ N 1 is an R-module map, then g ˝ f :
ś

iPIMi Ñ N 1 is multilinear.

(ii) Let J Ă I be non-empty, y “ pyiqiPIzJ an element of the product
ś

iPIzJMi, and ιJ,y :
ś

jPJMj Ñ
ś

iPIMi the unique map such that for all x “ pxjqjPJ P pMjqjPJ and k P I

πk ˝ ιJ,y pxq “

#

xk for k P J,
yk for k P IzJ.

Then the composition f ˝ ιJ,x :
ś

jPJMj Ñ N is multilinear.

(iii) Let pIaqaPA be a partition of the index set I which is assumed to be non-empty. Let pNaqaPA

be a family of R-modules, pgaqaPA a family of multilinear maps ga :
ś

iPIa
Mi Ñ Na, and

h :
ś

aPANa Ñ N multilinear. Define g :
ś

iPIMi Ñ
ś

aPANa as the unique map such that

πb ˝ g “ gb ˝ πIb for b P A,

where πJ for J Ă I as on the right side stands for the projection πJ :
ś

iPIMi Ñ
ś

jPJMj

uniquely determined by πj ˝ πJ “ πj for all j P J . Then the composition h ˝ g :
ś

iPIMi Ñ N
is multilinear.

Proof. ad (i ). Let j P I and x P
ś

iPIMi with πjpxq “ 0. By multilinearity of f and linearity of g,
the map Mj Ñ N 1, m ÞÑ gfpιjpmq ` xq then has to be linear, hence g ˝ f is multilinear.

ad (ii ). Let j P J and x P
ś

iPJMi with πjpxq “ 0. Then πjpιJ,ypxqq “ 0 and fιJ,ypιjpmq `
xq “ fpιjpmq ` ιJ,ypxq for all m P Mj by construction of ιJ,y. Hence the map Mj Ñ N , m ÞÑ

fιJ,ypιjpmq ` xq is linear by multilinearity of f . This proves that f ˝ ιJ,y is multilinear.
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ad (iii ). Given j P I let b be the unique element of A such that j P Ib. Assume that x P
ś

iPIMi

with πjpxq “ 0. By construction one has πjpπIbpxqq “ 0. Now let y P
ś

aPANa such that

πapyq “

#

0 for a “ b,

gaπIapxq for a ‰ b.

One then obtains for m PMj

πagpιjpmq ` xq “

#

gbπIbpιjpmq ` xq “ gbpιjpmq ` πIbpxqq for a “ b,

gaπIapxq “ πapyq for a ‰ b.

Hence
hgpιjpmq ` xq “ h

`

ιb
`

gbpιjpmq ` πIbpxq
˘

` y
˘

,

and the map Mj Ñ N , m ÞÑ hgpιjpmq ` xq is linear as the composition of two linear maps.

4.1.5 Lemma Assume to be given a non-empty family of R-modules pMiqiPI and a partition pIaqaPA
of the index set I. Then there exists a natural ismorphism

κI,A :
ź

iPI

Mi Ñ
ź

aPA

ź

iPIa

Mi

uniquely determined by the condition that πa ˝ κI,A “ πIa for all a P A.

Proof. By the universal property of the product theR-module map κ “ κI,A :
ś

iPIMi Ñ
ś

aPA

ś

iPIa
Mi

exists and is uniquely determined by the requirement that πa˝κI,A “ πIa for all a P A. Naturality also
follows from the universal property of the product. It remains to show that κ is an isomorphism. By
construction, πipxq “ πiπaκpxq “ 0 for all i P I and apiq P A such that i P Iapiq, hence x “ 0. So κ
is injective. It is also surjective. To see this pick xa P

ś

iPIa
Mi for each a P A. With apiq for i P I de-

fined as before put x “
`

πipxapiqq
˘

iPI
. Then, by construction, πiπaκpxq “ πiπapxq “ πipxq “ πipxaq

for all a P A and i P Ia, hence
`

πaκpxq
˘

aPA
“ pxaqaPA and κ is surjective.

4.1.6 Proposition (Exponential law for multilinear maps) Let pMiqiPI be a family of R-modules
over a commutative ring R, N an R-module, and assume that J Ă I is a non-empty subset such
that the complement K “ IzJ is also non-empty. Then the map

ηI,J : Mlin

˜

ź

jPJ

Mj ,Mlin

˜

ź

kPK

Mk, N

¸¸

ÑMlin

˜

ź

iPI

Mi, N

¸

,

f ÞÑ

˜

ź

iPI

Mi Q pxiqiPI ÞÑ f
`

pxjqjPJ
˘

ppxkqkPKq P N

¸

is an isomorphism which is natural in pMiqiPI and N .

Proof. We first show that η “ ηI,J is linear. To this end let

f, g PMlin
´

ś

jPJMj ,Mlin p
ś

kPKMk, Nq
¯

and r P R. Then, for all x “ pxiqiPI P
ś

iPIMi,

`

ηpf ` gq
˘

pxq “
`

f ` g
˘`

pxjqjPJ
˘

ppxkqkPKq “
`

fppxjqjPJq ` gppxjqjPJq
˘

ppxkqkPKq “

“ fppxjqjPJq ppxkqkPKq ` gppxjqjPJq ppxkqkPKq “
`

ηf
˘

pxq `
`

ηg
˘

pxq “
`

ηf ` ηg
˘

pxq

124



A.4. C˚-Algebras A.4.1. Infinite tensor products

and
`

ηprfq
˘

pxq “ prfqppxjqjPJq ppxkqkPKq “
`

rfppxjqjPJq
˘

ppxkqkPKq “ r
`

fppxjqjPJq ppxkqkPKq
˘

“

“ r
`

ηfpxq
˘

“
`

rpηfq
˘

pxq .

Hence η is an R-module map.

Next we show that η is an isomorphism by constructing an inverse. Given f P Mlin
`
ś

iPIMi, N
˘

we define f 7 : Mlin
`
ś

jPJMj

˘

ÑMlin
`
ś

kPKMk, N
˘

by the requirement that

f 7pyqpzq “ fpxy,zq for all y “ pyjqjPJ and z “ pzkqkPK ,

where xy,z is the element of
ś

iPIMi uniquely determined by

πipxy,zq “

#

yi for i P J,
zi for i P K.

One thus obtains an R-module map

p´q
7

I,J : Mlin

˜

ź

iPI

Mi, N

¸

ÑMlin

˜

ź

jPJ

Mj ,Mlin

˜

ź

kPK

Mk, N

¸¸

, f ÞÑ f 7

which by construction is inverse to ηI,J .

Naturality of ηI,J in pMjqjPJ and N is clear by definition.

4.1.7 Definition Let pMiqiPI be a family of R-modules over a commutative ring R. By a tensor
product of pMiqiPI one understands an R-module

Â

iPIMi together with a multilinear map τ :
ś

iPIMi Ñ
Â

iPIMi such that the following universal property is fulfilled:

(ITensor) For every R-module N and every multilinear map f :
ś

iPIMi Ñ N there exists a unique
R-module map f :

Â

iPIMi Ñ N such that the diagram

ś

iPI

Mi N

Â

iPI

Mi

τ

f

f

commutes.

The linear map f making the diagram comute will sometimes be called the linearization of the
multilinear map f .

Given a tensor product
`
Â

iPIMi, τ
˘

, we will usually denote the image of an element pxiqiPI P
ś

iPIMi under the map τ by biPIxi.

4.1.8 Remarks (a) Strictly speaking, a tensor product of a family pMiqiPI of R-modules is a pair
`
Â

iPIMi, τ
˘

having the above properties. By slight abuse of language, one usually denotes a tensor
product just by its first component, the R-module

Â

iPIMi. When helpful for clarity, the associated
map τ :

ś

iPIMi Ñ
Â

iPIMi will be denoted by τpMiqiPI
or by τI .
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(b) In the case where the index set I of the family pMiqiPI is infinite, one sometimes calls
Â

iPIMi

an infinite tensor product.

4.1.9 Theorem Let pMiqiPI be a family ofR-modules over a commutative ringR. Then the following
holds true.

(i) A tensor product
Â

iPIMi of the family pMiqiPI exists and is unique up to isomorphism. If I is
the empty set, then

Â

iPIMi “ R, if I contains a single element i˝, then
Â

iPIMi “Mi˝ .

(ii) If pNiqiPI is a second family of R-modules and pfiqiPI a family R-module maps fi : Mi Ñ Ni,
then there exists a unique linear map

Â

iPI fi :
Â

iPIMi Ñ
Â

iPI Ni making the diagram

ś

iPI

Mi
Â

iPI

Ni

Â

iPI

Mi

τ

f

Â

iPI
fi

commute, where f :
ś

iPIMi Ñ
Â

iPI Ni is the multilinear map pxiqiPI ÞÑ biPIfipxiq.

(iii) Let J Ă I be a finite non-empty subset set such thatMj is isomorphic to R for all j P J . Denote
for each j P J by 1j the image of the unit 1 P R under the isomorphism R –Mj and by 1J the
family p1jqjPJ . Moreover, for every family y “ pyjqjPJ let ιJ,y :

ś

iPIzJMi Ñ
ś

iPIMi be the
map which associates to x P

ś

iPIzJMi the family pxiqiPI such that xi “ πipxq for i P IzJ and
xi “ yi for i P J . Then the linearization ιJ,1J :

Â

iPIzJMi Ñ
Â

iPIMi of the multilinear map
τI ˝ ιJ,1J :

ś

iPIzJMi Ñ
Â

iPIMi is an isomorphism.

Proof. ad (i ). By its universal property, the tensor product of the family pMiqiPI is uniquely deter-
mined up to isomorphism. Hence it remains to show the existence of the tensor product. To this end
consider the free R-module over the set

ś

iPIMi and denote it by F . Let δ :
ś

iPIMi ãÑ F be the
canonical injection and U be the submodule of F spanned by the elements

δ
`

ιjpryj ` zjq ` pxiqiPI
˘

´ rδ
`

ιjpyjq ` pxiqiPI
˘

´ δ
`

ιjpzjq ` pxiqiPI
˘

,

where j P I, yj , zj P Mj , r P R, and pxiqiPI P π´1
j p0q. Then put

Â

iPIMi “ F {U and define
τ as the composition of the canonical projection π : F Ñ

Â

iPIMi with δ :
ś

iPIMi Ñ F . By
construction, τ is multilinear. Assume that N is an R-module and f :

ś

iPIMi Ñ N is a multilinear
map. By the universal property of free R-modules, f lifts to a unique R-linear map f 1 : F Ñ N such
that f “ f 1 ˝ δ. By multilinearity of f , the map f 1 vanishes on the submodule U , hence descends
to an R-linear f :

Â

iPIMi Ñ N such that f 1 “ f ˝ π. Hence f “ f 1 ˝ δ “ f ˝ π ˝ δ “ f ˝ τ .
By surjectivity of δ and uniqueness of f 1, f is the unique R-linear map satisfying f “ f ˝ τ . Hence
`
Â

iPIMi, τ
˘

is a tensor product of the family pMiqiPI .

In case I “ H, the cartesian product
ś

iPIMi is final in the category of sets, hence consists of only one
element ‹ only. This means in particular that for an R-module N any map f :

ś

iPIMi “ t‹u Ñ N
is multilinear. Put

Â

iPIMi “ R and let τ : t‹u Ñ R be the map ‹ ÞÑ 1. Now let f : RÑ N be the
unique linear map such that fp1q “ fp‹q. Then f “ f ˝ τ and the pair pR, τq fulfills the universal
property of the tensor product.
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If I is a singleton with unique element i0, then
ś

iPIMi “ Mi0 and a map f :
ś

iPIMi Ñ N is
multilinear if and only if f as a map from Mi˝ to N is linear. This implies that the pair pMi0 , idMi˝

q

then is a tensor product for the family pMiqiPI .

ad (ii ). This is an immediate consequence of the universal property of the tensor product.

ad (iii ). We construct an inverse to ιJ,1J :
Â

iPIzJMi Ñ
Â

iPIMi. Let x “ pxiqiPI be an element
of

ś

iPIMi and put

λpxq “

˜

ź

jPJ

xj

¸

¨ biPIzJxi

˜

ź

jPJ

xj

¸

¨ τIzJppxiqiPIzJq .

Then λ :
ś

iPIMi Ñ
Â

iPzJMi is multilinear by construction, hence factors through a linear map
λ :

Â

iPIMi Ñ
Â

iPIzJMi. By definition, λ is a left inverse of ιJ,1J . It is also a right inverse since
for all pxiqiPI P

ś

iPIMi by multilinearity of τI

ιJ,1J ˝ λ ˝ τI ppxiqiPIq “ ιJ,1J

˜˜

ź

jPJ

xj

¸

¨ biPIzJxi

¸

“

˜

ź

jPJ

xj

¸

¨
`

ιJ,1J ˝ τIzJ
`

pxiqiPIzJ
˘˘

“

“

˜

ź

jPJ

xj

¸

¨
`

τI ˝ ιJ,1J
`

pxiqiPIzJ
˘˘

“ τI ˝ ιJ,pxjqjPJ
`

pxiqiPIzJ
˘

“ τI ppxiqiPIq

and since by construction of the tensor product the image of τI is a generating system for the
R-module

Â

iPIMi.

4.1.10 Lemma Assume that pMiqiPI is a finite family of R-modules such that for every i P I a
generating set Si of the R-module Mi has been given. Then the set S “ τ p

ś

iPI Siq is a generating
set of the tensor product

Â

iPIMi.

Proof. By construction of the tensor product in the proof of Theorem 4.1.9 it is clear that a generating
set of

Â

iPIMi is given by the set of elements of the form biPIxi where pxiqiPI P
ś

iPIMi. Each of
the xi can now be represented in the form

xi “
ni
ÿ

k“1

ri,ksi,k with ri,1, . . . , ri,ni P R, si,1, . . . , si,ni P Si .

Hence, by multilinearity of τ and with I “ ti1, . . . , idu,

biPIxi “ τ ppxiqiPIq “

ni1
ÿ

ki1“1

¨ ¨ ¨

nid
ÿ

kid“1

ri1,ki1 ¨ . . . ¨ rid,kid ¨ τ ppsi,kiqiPIq ,

so biPIxi is a linear combination of elements of S and the claim is proved.

4.1.11 Lemma Let pMiqiPI be a family of R-modules, pIaqaPA a finite partition of the index set
I, and N an R-module. For a P A put Na “

Â

iPIa
Mi and let τa :

ś

iPIa
Mi Ñ Na denote the

canonical map. Assume that f :
ś

aPA

ś

iPIa
Mi Ñ N is a map which is componentwise multilinear

in the following sense.
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pCMq Let b P A and y “ pyaqaPA P
ś

aPA

ś

iPIa
Mi a family with yb “ 0. If for all j P Ib and families

x “ pxiqiPIb P
ś

iPIb
Mi with xj “ 0 the map

Mj Ñ N, m ÞÑ fpιbpιjpmq ` xq ` yq

is linear, then f factors through pτaqaPA :
ś

aPA

ś

iPIa
Mi Ñ

ś

aPANa. More precisely, there
exists a unique multilinear map f :

ś

aPANa Ñ N such that

f “ f ˝ pτaqaPA .

Proof. We prove the claim by induction on the cardinality ofA. IfA is a singleton, then
ś

aPA

ś

iPIa
Mi

canonically coincides with
ś

iPIMi and f :
ś

iPIa
Mi Ñ N is multilinear, hence by the universal prop-

erty of the tensor product there exists a unique linear map f : Na Ñ N such that f “ f ˝ τa.

Now assume that the claim holds whenever the cardinality of the index set A is ď n for some n P N˚.
Assume to be given initial data pMiqiPI and N , a partition pIaqaPA of A with |A| “ n ` 1 and
componentwise multilinear map f :

ś

aPA

ś

iPIa
Mi Ñ N . Fix a P A and put B “ Aztau. Let

x “ pxiqiPIa P
ś

iPIa
Mi and rx be the element of

ś

dPA

ś

iPId
Mi such that

πdprxq “

#

x for d “ a ,

0 else .

The map
fx :

ź

bPB

ź

iPIb

Mi Ñ N, y ÞÑ fpιBpyq ` rxq

then is componentwise multilinear. Hence by inductive assumption there exists a unique multilinear
map fx :

ś

bPB Nb Ñ N such that fx “ fx ˝ pτbqbPB. By assumption on f the map
ś

iPIa
Mi Ñ

Map
´

ś

bPB

ś

iPIb
Mi, N

¯

, x ÞÑ fx is multilinear which implies multilinearity of

f‚ :
ź

iPIa

Mi ÑMlin

˜

ź

bPB

Nb, N

¸

, x ÞÑ fx .

Let F : Na Ñ Mlin p
ś

bPB Nb, Nq be its linearization. Application of the exponential law for
multilinear maps, Proposition 4.1.6, now gives a multilinear map ηpF q :

ś

dPANd Ñ N which we
denote by f . Given a family pxdqdPA of families xd “ pxiqiPId one checks

f
``

τdpxdq
˘

dPA

˘

“ F
`

τapxaq
˘ ``

τbpxbq
˘

bPB

˘

“ fxa
``

τbpxbq
˘

bPB

˘

“ fxa ppxbqbPBq “ f ppxdqdPAq .

Hence f ˝ pτdqdPA “ f . To finish the induction step it remains to prove uniqueness. So let g :
ś

dPANd Ñ N be another multilinear map such that g ˝ pτdqdPA “ f and consider the induced linear
map g7 “ η´1pgq : Na ÞÑMlinp

ś

bPB Nb, Nq. Then for every x P
ś

iPIa
Mi the relation

g7pτapxqq ˝ pτbqbPB “ fx “ fx ˝ pτbqbPB

is satisfied. Hence g7pτpxqq “ fx for all x P
ś

iPIa
Mi which entails that g7 coincides with F . By

Proposition 4.1.6 one obtains g “ f . This finishes the induction step and the lemma is proved.
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4.1.12 Proposition Let pMiqiPI be a family of R-modules and pIaqaPA a finite partition of the index
set I. Then there exists a natural isomorphism

αI,A :
â

iPI

Mi Ñ
â

aPA

â

iPIa

Mi.

Proof. Put Na “
Â

iPIa
Mi for a P A and let τa :

ś

iPIa
Mi Ñ Na be the canonical map to the

tensor product. Let τA :
ś

aPANa Ñ
Â

aPANa be the canonical map to the tensor product of the
modules Na. Define τI,A :

ś

iPIMi Ñ
ś

aPANa as the unique map so that πa ˝τI,A “ τa ˝πIa for all
a P A. By construction τI,A “ pτaqaPA˝κI,A, where κI,A :

ś

iPIMi Ñ
ś

aPA

ś

iPIa
Mi is the natural

isomorphism from Lemma 4.1.5. The composition τA ˝ τI,A then is multilinear by Lemma 4.1.4 (iii),
hence factors through a linear map αI,A :

Â

iPIMi Ñ
Â

aPANa that is

τA ˝ pτaqaPA ˝ κI,A “ αI,A ˝ τI . (A.4.1.1)

Naturality of αI,A in pMiqiPI is clear by definition so it remains to construct an inverse to αI,A. Con-
sider the composition τI ˝ κ´1 :

ś

aPA

ś

iPIa
Mi Ñ

Â

iPIMi. Assume that a P A and pybqbPAztau P
ś

bPAztau

ś

iPIb
Mi have been chosen. Let ya P

ś

iPIa
Mi be 0, put ry “ pydqdPA P

ś

dPA

ś

iPId
Mi,

and let y P
ś

iPIMi be the family such that πipyq “ πipyapiqq for all i P I, where apiq denotes
the unique element of A such that i P Iapiq. In other words let y “ κ´1pryq. For every j P Ia and
x “ pxiqiPIa P

ś

iPIa
Mi with πjpxq “ 0 the map

Mj Ñ
â

iPI

Mi, m ÞÑ τI ˝ κ
´1 pιapιjpmq ` xq ` ryq “ τI pιjpmq ` ιIapxq ` yq

then is multilinear since τI is multilinear and πjpιIapxq ` yq “ πjpxq ` πjpyaq “ 0. Hence τI ˝ κ´1

is componentwise multilinear and therefore, by Lemma 4.1.11, factors through the map pτaqaPA :
ś

aPA

ś

iPIa
Mi Ñ

ś

aPANa which means that

τI ˝ κ
´1 “ λI,A ˝ pτaqaPA (A.4.1.2)

for some uniquely defined multilinear map λI,A :
ś

aPANa Ñ
Â

iPIMi. Let

λI,A :
â

aPA

Na Ñ
â

iPI

Mi

be the linearization of λI,A. We claim that λI,A is inverse to αI,A. By definition of λI,A and
Eqs. (A.4.1.1) and (A.4.1.2) one concludes

λI,A ˝ αI,A ˝ τI “ λI,A ˝ τA ˝ pτaqaPA ˝ κI,A “ λI,A ˝ pτaqaPA ˝ κI,A “ τI .

Since the image of τI generates
Â

iPIMi as an R-module, λI,A has to be left inverse to αI,A. Using
Eqs. (A.4.1.1) and (A.4.1.2) again compute

αI,A ˝ λI,A ˝ τA ˝ pτaqaPA “ αI,A ˝ λI,A ˝ pτaqaPA “ αI,A ˝ τA ˝ κ
´1
I,A “ τA ˝ pτaqaPA .

Since by Lemma 4.1.10 the image of τA ˝ pτaqaPA generates
Â

aPA

Â

iPIa
Mi, the equality

αI,A ˝ λI,A “ idÂ

aPA

Â

iPIa
Mi

follows and the proposition is proved.
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4.1.13 Proposition and Definition Let pAiqiPI be a family of R-algebras. Then the tensor product
A “

Â

iPI Ai carries in a natural way the structure of an R-algebra where the product map is defined
by

¨ : AˆAÑ A, pbiPIai,biPIbiq ÞÑ biPIpai ¨ biq .

In case each of the algebras Ai is commutative, then A is commutative as well. Likewise, if each Ai
is unital and 1i denotes the unit element of Ai, then A is unital with unit given by 1 “ biPI1i. One
calls A the tensor product algebra of the family of algebras pAiqiPI .

Proof. The map
ź

pi,kqPIˆt1,2u

Ai Ñ A, pai,kqpi,kqPIˆt1,2u ÞÑ biPIpai,1 ¨ ai,2q

is multilinear by bilinearity of the product maps on the Ai and multilinearity of τI , so factors through
a linear map µ : A b A –

Â

pi,kqPIˆt1,2uAi Ñ A. Composition of µ with the canonical bilinear
map A ˆ A Ñ A b A gives the product map ¨ : A ˆ A Ñ A and shows that the product on A is
well-defined. By construction, the product map ¨ is bilinear. Given biPIai,biPIbi,biPIci P A one
computes
`

biPI ai ¨ biPIbi
˘

¨ biPIci “ biPIppai ¨ biq ¨ ciq “ biPIpai ¨ pbi ¨ ciqq “ biPIai ¨
`

biPI bi ¨ biPIci
˘

.

This entails that the product on A is associative. In the same way one shows that A is commutive
respectively unital if each of the Ai is.

4.1.14 As we have seen, the infinite tensor product construction works well for objects of algebraic
categories like R-modules, vector spaces or R-algebras. As soon as a topologies compatible with the
algebraic structure come in it becomes difficult and sometimes even impossible to construct or even
define
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A.5.1. Pro-manifolds

A.5.2. Hilbert manifolds

5.2.1 In this section we will describe several examples of Hilbert manifolds.

5.2.2 Example Let H be a Hilbert space over the field K of real or complex numbers and ω : HÑ R
a continuous nonzero real linear form on H. Then the sphere

SpHq “
 

v P H
ˇ

ˇ }v} “ 1
(

is a real analytic Hilbert manifold modelled on the real Hilbert space kerω. The sphere has tangent
bundle

TSpHq “
 

pv, wq P SpHq ˆH
ˇ

ˇ Rexv, wy “ 0
(

.

A.5.3. The Graßmann manifold of a Banach space

5.3.1 Throughout this section we denote by E a Banach space over the field K “ R or “ C. The
main object of study of this section then is the space GE of closed K-linear subspaces of E. It is
called the Graßmann manifold or Graßmannian of E. Let us equip GE with a natural topology by
defining a metric on it. For elements V,W P GE, the gap distance dgappV,Wq between V and W
is defined as the Haudorff distance of their respective closed unit balls BV and BW. More precisely
that means

dgappV,Wq “ dHpBV,BWq “ max

#

sup
vPBV

dpv,BWq, sup
wPBW

dpw,BVq

+

, (A.5.3.1)

where, as usual, dpv,Bq “ inf
wPB

}v ´ w} denotes the distance between a point v P E and a closed

B Ă E.

5.3.2 Lemma Let
~dgappV,Wq “ sup

vPBV

dpv,BWq

denote the directed or one-sided gap between V,W P GE. Then the following holds true.

(i) ~dgapp0,Vq “ ~dgappV, 0q “ 1 whenever V ‰ 0.

131



A.5. Manifolds A.5.3. The Graßmann manifold of a Banach space

(ii) ~dgappV,Wq “ 0 if and only if V Ă W.

(iii) For all x P E,
dpx,BVq ď dpx,BWq `

~dgappW,Vq .

Proof. (i) follows immediately by definition and (ii) holds true since dpv,BWq “ 0 if and only if
v P BW. It remains to show (iii). To this end let x P E, v P BV and w P BW. Then, by the triangle
inequality for the distance d : Eˆ E Ñ R, px, yq ÞÑ }x´ y},

dpx, vq ď dpx,wq ` dpw, vq .

This entails, by taking the infimum with respect to v P BV,

dpx,BVq ď dpx,wq ` dpw,BVq ď dpx,wq ` ~dgappW,Vq .

Since w P BW was arbitrary, (iii) follows.

5.3.3 Proposition The gap distance on the Graßmannian GE of a Banach space is a metric.

Proof. By definition, the gap distance is symmetric. By (ii) of Lemma 5.3.2, one has dgappV,Wq “ 0
if and only if V “ W. It remains to show the triangle inequality. Let V,W,X P GH and use (iii) in
the preceding lemma to verify

~dgappX,Vq “ sup
xPBX

dpx,BVq ď sup
xPBX

dpx,BWq `
~dgappW,Vq ď ~dgappX,Wq ` ~dgappW,Vq ,

~dgappV,Xq “ sup
vPBV

dpv,BXq ď sup
vPBV

dpv,BWq `
~dgappW,Xq ď ~dgappV,Wq ` ~dgappW,Xq .

This entails the triangle inequality for dgap.

5.3.4 Recall that to every closed linear subspace V Ă H of a Hilbert space H there exists a unique
orthogonal projection PV : HÑ H whose image is V. The kernel of the projection PV coincides with
the orthogonal complement VK. One thus obtains a canonical embedding of GH ãÑ BpHq. The
restriction of the operator norm distance to GH endows GH with another metric which we denote
by δ.

5.3.5 Proposition ((Akhiezer & Glazman, 1993, Sec. 34)) For every Hilbert spaceH the metric

δ : GH ˆGHÑ R, pV,Wq ÞÑ }PV ´ PW}

coincides with the gap metric dgap : GH ˆGHÑ R. Moreoever, for all V,W P GH,

(i) dgappV,Wq ď 1,

(ii) ~dgappV,Wq “ }pI ´ PWqPV}, and

(iii) dgappV,Wq “ max
 

}pI ´ PWqPV}, }pI ´ PVqPW}
(

.
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Proof. First note that

}pI ´ PWqPV} “ sup
vPBV

}v ´ PWv} “ ~dgappV,Wq

since dpv,Wq “ }v ´ PWv} for all v P BV by the orthogonal decomposition theorem, 3.2.3. This
proves (ii) and (iii). Next observe that

PV ´ PW “ PVpI ´ PWq ´ pI ´ PVqPW .

By orthogonality of the images of PVpI ´ PWq and pI ´ PVqPW this implies for all x P H

}pPV ´ PWqx}
2 “ }PVpI ´ PWqx}

2 ` }pI ´ PVqPWx}
2 ď

ď }pI ´ PWqx}
2 ` }PWx}

2 “ }x}2 ,
(A.5.3.2)

hence
δpV,Wq “ }PV ´ PW} ď 1 . (A.5.3.3)

One also obtains

δpV,Wq “ sup
xPBH

}pPV ´ PWqx} “ sup
xPBH

a

}PVpI ´ PWqx}2 ` }pI ´ PVqPWx}2. (A.5.3.4)

By restricting x to the closed ball of W this formula entails

δpV,Wq ě sup
xPBW

}pI ´ PVqPWx} “ sup
xPBW

}pI ´ PVqx} “ ~dgappV,Wq .

By switching V and W in (A.5.3.3) one gets

δpV,Wq ě sup
xPBV

}pI ´ PWqPVx} “ sup
xPBV

}pI ´ PWqx} “ ~dgappW,Vq .

Consequently,
δpV,Wq ě dgappV,Wq . (A.5.3.5)

Let us show that
δpV,Wq ď dgappV,Wq . (A.5.3.6)

To this end observe that for all x P BH by (ii) and P 2
W “ PW

}pI ´ PVqPWx} ď ~dgappW,Vq ¨ }PWx} . (A.5.3.7)

Moreover,

}PVpI ´ PWqx}
2 “ xPVpI ´ PWqx, PVpI ´ PWqxy “ xP

2
VpI ´ PWqx, pI ´ PWq

2xy “

“ xpI ´ PWqP
2
VpI ´ PWqx, pI ´ PWqxy ď

ď ~dgappV,Wq }PVpI ´ PWqx} }pI ´ PWqx} ,

and therefore
}PVpI ´ PWqx} ď ~dgappV,Wq }pI ´ PWqx} . (A.5.3.8)
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Inserting this estimate and (A.5.3.7) into the squared right side of (A.5.3.4) then gives

}PVpI ´ PWqx}
2 ` }pI ´ PVqPWx}

2 ď ~d 2
gappW,Vq ¨ }PWx}

2 ` ~d 2
gappV,Wq }pI ´ PWqx}

2 ď

ď d2
gappW,Vq ¨

`

}PWx}
2 ` }pI ´ PWqx}

2
˘

“ d2
gap }x}

2 .

Comparing with the left side of (A.5.3.4) shows (A.5.3.6), and the equality of δ and dgap follows. By
(A.5.3.3) the latter also yields (i).

5.3.6 Remark We will use the symbols dgap and δ interchangeably to denote the gap metric on the
Graßmannian of a Banach space .

5.3.7 Theorem Eqipped with the gap metric the Graßmann manifold of a Banach space is a complete
metric space.

Proof. We present the proof for the underlying Banach space being a Hilbert space H. Then the claim
followsimmediately from the fact that BpHq is complete and that the limit of a Cauchy sequence of
orthogonal projections pPnqnPN Ă BpHq is again an orthogonal projection. The general case is more
tricky.
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A.6. Lie groups

A.6.1. Symmetry groups of bilinear and sesquilinear forms

6.1.1 In this section K will always stand for the field of real or complex numbers. Before defining
their symmetry groups let us recall the notions of bilinear and sesquilinear forms. A bilinear form on
a K-vector space V is a map b : V ˆV Ñ K having the following properties:

(BF1) The map b is linear in its first coordinate which means that

bpv1 ` v2, wq “ bpv1, wq ` bpv2, wq and bprv, wq “ rbpv, wq

for all v, v1, v2, w P V and r P K.

(BF2), (SF2) The map b is linear in its second coordinate which means that

bpv, w1 ` w2q “ bpv, w1q ` bpv, w2q and bpv, rwq “ rbpv, wq

for all v, w,w1, w2 P V and r P K.

Bilinear forms with the property that commuting its variables leads to the same or to the negative of
the original bilinear form are given a particular name. More precisely, a bilinear map b : V ˆ V Ñ K
is said to be symmetric if

(BF3s) bpv, wq “ bpw, vq for all v, w P V,

and antisymmetric or skew-symmetric if

(BF3a) bpv, wq “ ´bpw, vq for all v, w P V.

A map b : V ˆ V Ñ K which satisfies (BF2) and axiom (SF1) below instead of (BF1) is called a
sesquilinear form.

(SF1) The map b is conjugate-linear in its first coordinate which means that

bpv1 ` v2, wq “ bpv1, wq ` bpv2, wq and bprv, wq “ rbpv, wq

for all v, v1, v2, w P V and r P K.

A sesquilinear form b is called a hermitian form if it has the following property:

(SF3c) The map b is conjugate-symmetric which means that

bpv, wq “ bpw, vq for all v, w P V .
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If the ground field of the underlying vector space of a bilinear or sesquilinear form b is C, one calls b a
complex bilinear form respectively a complex sesquilinear form. One uses analogous language when
the ground field is R. Note that a real sesquilinear form is the same as a real bilinear form.

A bilinear or sesquilinear form b is said to be weakly-nondegenerate if it satisfies axiom

(SF4w) The map 5 : V Ñ V1, v ÞÑ v5 “ bp´, vq “
`

V Q w Ñ bpw, vq P K
˘

from V to its algebraic
dual V1 is injective .

Note that (SF4w) is equivalent to the requirement that for every v P V the map bpv,´q : V Ñ K,
w Ñ bpv, wq is the zero map if and only if v “ 0.

In case the underlying vector space V is normed, there is a stronger version of nondegeneracy for
bounded bilinear or sesquilinear forms b : VˆV Ñ K. Namely, one calls such a form nondegenerate
if it fulfills

(SF4n) The map 5 : V Ñ V˚, v ÞÑ v5 “ bpv,´q “
`

V Q w Ñ bpv, wq P K
˘

from V to its topological
dual V˚ is a linear or conjugate-linear topological isomorphism.

Recall that bpv, vq P R for every hermitian form b on V and v P V. In case that such a b satisfies

(SF5s) bpv, vq ě 0 for all v P V,

then one calls the hermitian form b positive semidefinite.

Recall from Lemma 3.1.6 that a positive semidefinite hermitian form b on a K-vector space V is
weakly-nondegenerate if and only if it is positive definite which means that

(SF5p) bpv, vq ą 0 for all v P Vzt0u.

6.1.2 Remark If b is a nondegenerate bilinear or sesquilinear form on a Banach space V, then one
sometimes calls the map 5 : V Ñ V˚ from Axiom (SF4n) and its inverse 7 : V˚ Ñ V the musical
isomorphisms associated to b.

6.1.3 Examples In addition to the hermitian forms introduced in Examples 3.1.9 let us give a few
more examples of bilinear forms which are particularly relevant for mathematics or mathematical
physics.

(a) Let p, q be positive integers, n “ p` q, and x¨, ¨yp,q : Rn ˆ Rn Ñ R the pseudo-euclidean form
given by

xx, yyp,q “

p
ÿ

i“1

xi yi ´
n
ÿ

j“p`1

xj yj for x “ px1, . . . , xnq, y “ py1, . . . , ynq P Rn .

The map x¨, ¨yp,q is a nondegenerate bilinear form, but it is not positive semidefinite by definition.
The space Rn together with the pseudo-euclidean form x¨, ¨yp,q is sometimes denoted Rp,q. For
the particular case pp, qq “ p1, dq “ p1, n ´ 1q one calls R1,d Minkowski space of space–time
dimension d ` 1, and x¨, ¨yM :“ x¨, ¨y1,d the corresponding Minkowski metric. The components
of elements x, y P R1,d of Minkowski space are often indexed in the form x “ px0, x1, . . . , xdq “
pxµqdµ“0 and y “ py0, y1, . . . , ydq “ pyνqdν“0. In this notation, the Minkowski metric is given by

xx, yyM “ x0 y0 ´

d
ÿ

i“1

xi yi .
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Moreover, one associates to x and y the space-vectors

~x “ px1, . . . , xdq “ pxiqdi“1 and ~y “ py1, . . . , ydq “ pyjqdj“1 .

When labels run through all space-time indices they are usually denoted in the mathematical
physics literature by lower-case Greek letters, when they run only through space indices, they are
denoted by lower-case Roman letters. We will follow these conventions.

(b) Next consider K2n with n P Ną0 and define

ω : K2n ˆK2n Ñ K, pv, wq ÞÑ
n
ÿ

i“1

pviwn`i ´ wi vn`iq .

Then ω is a nondegenerate antisymmetric bilinear form. We call it the standard symplectic form
onK2n. More generally, a nondegenerate antisymmetric bilinear form ω : EˆE Ñ K on a Banach
space E over K is called a symplectic form. If ω : EˆE Ñ K is only weakly-nondegenerate (but
still antisymmetric), then one says that ω is a weakly-symplectic form.

If V is a Banach space and E “ V ‘V˚, then

ω : Eˆ E Ñ K,
`

pv, αq, pw, βq
˘

ÞÑ βpvq ´ αpwq

is a weakly-symplectic form on E which is symplectic if and only if V is reflexive that is if and
only if the canonical embedding V ãÑ V˚˚ is an isomorphism.

Proof. Antisymmetry is clear by definition.

6.1.4 Next consider a Banach space E over K with norm }¨} and the space BpEq of bounded K-linear
operators on E. Recall that BpEq carries the following natural topologies:

(i) the norm topology or uniform operator topology Tn defined by the operator norm

} ´ } : BpEq Ñ Rě0, A ÞÑ }A} :“ sup
 

}Av} P Rě0 | v P E & }v} ď 1
(

,

(ii) the compact-open topology Tco defined by the seminorms

pK : BpEq Ñ Rě0, A ÞÑ pKpAq :“ sup
 

}Av} P Rě0 | v P K
(

,

where K runs through the nonempty compact subsets of E,

(iii) the strong operator topology Ts defined by the seminorms

pv : BpEq Ñ Rě0, A ÞÑ pvpAq :“ }Av} ,

where v runs through the nonzero elements of E,

(iv) the weak operator topology Tw defined by the seminorms

pλ,v : BpEq Ñ Rě0, A ÞÑ pλ,vpAq :“ λpAvq ,

where λ runs through the nonzero bounded linear functionals E Ñ K and v through the nonzero
elements of E.
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These four operator topologies are comparable. More precisely one has

Tw Ă Ts Ă Tco Ă Tn .

In case E is finite dimensional, the topologies coincide, if E is infinite dimensional, then the inclusions
are proper.

To denote which topology BpEq is endowed with we write BpEqn, BpEqco, BpEqs and BpEqw,
respectively.

6.1.5 Proposition and Definition Let E be a Banach space over K, and GLpEq Ă BpEqn the space
of bounded invertible K-linear operators on E endowed with the norm topology. Then the following
holds true.

(a) The space GLpEq is open in BpEqn.

(b) GLpEq together with the operator product and the identity map idE is a group.

(c) The group G :“ GLpEq endowed with the norm topology is a topological group which means
that it has the following properties:

(TopGr1) The multiplication map ¨ : Gˆ G Ñ G is continuous.

(TopGr2) The inversion map i : G Ñ G is continuous.

Proof. ad (b). By the open mapping theorem the inverse of a bounded invertible operator is bounded
as well, hence g´1 P GLpEq for all g P GLpEq. Obviously idE P GLpEq, so GLpEq is a group indeed.

ad (a). Let g P GLpEq. Then }g´1} ą 0, since 1 “ }v} ď }g´1} }gv} for every unit vector v P E.
Let 0 ă r ă 1

}g´1}
. For A P BpEq with }A} ă r the series

ř

kPNp´1qk
`

g´1A
˘k then is dominated

by the converging geometric series
ř

kPN r
k, hence converges too. Compute

`

idE ` g
´1A

˘

˜

8
ÿ

k“0

p´1qk
`

g´1A
˘k

¸

“

8
ÿ

k“0

p´1qk
`

g´1A
˘k
´

8
ÿ

k“1

p´1qk
`

g´1A
˘k
“ idE

and analogously
˜

8
ÿ

k“0

p´1qk
`

g´1A
˘k

¸

`

idE ` g
´1A

˘

“ idE .

Therefore idE ` g´1A is invertible with bounded inverse
ř8
k“0p´1qk

`

g´1A
˘k. Hence the operator

g ` A “ g
`

idE ` g´1A
˘

is invertible as well and the open ball of radius r around g is contained in
GLpEq. Thus GLpEq is open in BpEq.

ad (c). To verify continuity of multiplication recall that }AB} ď }A} }B} for all A,B P BpEq. Then

}AB ´A1B1} “ }pAB ´A1Bq ` pA1B ´A1B1q} ď }A´A1} }B} ` }A1} }B ´B1} .

Hence multiplication is locally Lipschitz continuous, therefore continuous.
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To prove continuity of inversion let g P GLpEq and choose 0 ă r ă 1
}g´1}

. Then g ` A P GLpEq for
all A P BpEq with }A} ă r by the preceding considerations. Moreover,

›

›pg `Aq´1 ´ g´1
›

› “
›

›

`

pidE ` g
´1Aq´1 ´ idE

˘

g´1
›

› ď

ď
›

›g´1
›

›

›

›

›

›

›

8
ÿ

k“1

p´1qk
`

g´1A
˘k

›

›

›

›

›

ď
›

›g´1
›

›

8
ÿ

k“1

›

›g´1A
›

›

k
ď

›

›g´1
›

›

2

1´ r}g´1}
}A} .

Hence inversion is locally Lipschitz continuous, so in particular continuous.

Unless mentioned differently, we assume from now on that GLpEq carries the norm topology. Some-
times we will write GLpEqn to emphasize this.

6.1.6 Assume that b : E ˆ E Ñ K is a bounded bilinear or sesquilinear form on a Banach space E
over K. Consider the group GLpEq and define GpE, bq as the set of all g P GLpEq such that

bpgv, gwq “ bpv, wq for all v, w P E .

6.1.7 Proposition Under the assumptions stated GpE, bq is a closed subgroup of GLpEqn.

Proof. If g, h P GpE, bq, then their operator product gh lies in GpE, bq as well since

bpghv, ghwq “ bphv, hwq “ bpv, wq for all v, w P E .

Moreover, idE leaves b invariant, so is in GpE, bq, too. Hence GpE, bq is a subgroup of GLpEqn.

Now assume that g P GLpEqnzGpE, bq. Then there are v, w P E such that

bpgv, gwq ‰ bpv, wq and }v} “ }w} “ 1 .

Put δ “ |bpgv, gwq ´ bpv, wq| and let C “ sup
 

|bpx, yq|
ˇ

ˇ x, y P E & }x} “ }y} “ 1
(

. Then one has
for all h P BpEq

|bphv, hwq ´ bpv, wq| “
ˇ

ˇ

`

bphv, hwq ´ bpgv, gwq
˘

´
`

bpv, wq ´ bpgv, gwq
˘ˇ

ˇ ě

ě
ˇ

ˇδ ´ |bphv, hwq ´ bpgv, gwq|
ˇ

ˇ ě

ě δ ´ |bphv, hwq ´ bpgv, hwq| ´ |bpgv, hwq ´ bpgv, gwq| ě

ě δ ´ C }h´ g} p}h} ` }g}q .

Hence, if }h´ g} ă ε with ε “ min
!

1, 1
2}g´1}

, δ
2pC`1qp2}g}`1q

)

, then h P GLpEq and

|bphv, hwq ´ bpv, wq| ě δ ´ C p2}g} ` 1q ε ě
1

2
δ .

So GLpEqnzGpE, bq is open and the claim is proved.

6.1.8 Examples (a) For a Hilbert space H, the group GpH, x¨, ¨yq is called the unitary group of H
and denoted UpHq. If the underlying ground field is R, one often writes OpHq for GpH, x¨, ¨yq
and calls it the orthogonal group of the real Hilbert space H. In the finite dimensional case,
Upnq stands for UpCnq and Opnq for OpRnq.
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(b) Given two positive integers p, q consider the pseudo-euclidean metric x¨, ¨yp,q on Rp,q – Rp`q,
see Example 6.1.3 (a). The invariant group G

`

Rn, x¨, ¨yp,q
˘

then is called a pseudo-orthogonal
group and is denoted Opp, qq.

(c) Let E be a Banach space over K with a symplectic form ω. The group SppE, ωq :“ G
`

E, ωq
then is the symplectic group associated to pE, ωq. If E is K2n and ω its canonical symplectic
form, then one writes Spp2n,Kq for the associated symplectic group.

6.1.9 It has been claimed wrongly at several places in the mathematical literature, notably in Simms
(1968)[Proof of Thm. 1] and Atiyah & Segal (2004)[p. 321] that the unitary group with the strong
operator topology respectively with the compact-open topology is not a topological group. The
correct(ed) statement appeared in Schottenloher (1995)[III.3.2 Satz], Neeb (1997)[Prop. II.1], and
Schottenloher (2008)[Prop.3.11], whose presentation we will essentially follow here.

6.1.10 Proposition If H is a Hilbert space, then UpHqs, the unitary group UpHq endowed with the
strong operator topology, is a complete topological group. Moreover, the compact-open topology, the
strong operator topology, and weak operator topology all coincide on UpHq. Finally, if H is separable,
then UpHqs is completely metrizable.

Proof. For v P H and V P UpHq let pv,V : UpHq Ñ Rě0 be defined by

U ÞÑ pv,V pUq “ }pU ´ V qv} .

A subbasis of the strong operator topology on UpHq then is given by the sets
 

U P UpHq
ˇ

ˇ pv,V pUq ă ε
(

, where v P H, V P UpHq, and ε ą 0 .

A.6.2. The Lie group SOp3q and its universal cover SUp2q

6.2.1 Recall that the orthogonal group in real dimension 3 is given by

Op3q “
 

g P GLp3,Rq
ˇ

ˇ @~x, ~y P R3 : xg~x, g~yy “ x~x, ~yy
(

.

The special orthogonal group in dimension 3 is the subgroup

SOp3q “
 

g P Op3q
ˇ

ˇ det g “ 1
(

.

Let us show that both are Lie groups. Consider the map

f : GLp3,Rq Ñ Symp3,Rq, g ÞÑ gtg ,

where gt is the transpose of g and Sympn,Rq denotes the space of real symmetric n ˆ n matrices.
Note that dimSympn,Rq “ npn`1q

2 and that f is well-defined since pgtgqt “ gtg. We show that f
is a submersion. To this end check first that for every g P GLp3,Rq the tangent map of f at g is

Tgf : glp3,Rq Ñ Symp3,Rq, A ÞÑ Atg ` gtA .
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For given S P Symp3,Rq put A “ 1
2

`

gt
˘´1

S and compute

TgfpAq “
1

2

`

St ` S
˘

“ S .

Hence f is a submersion, and Op3q “ f´1pI3q is a submanifold of GLp3,Rq of dimension dimR GLp3,Rq´
dimRSymp3,Rq “ 9´6 “ 3. Because the group multiplication and inverse on GLp3,Rq are smooth,
their restriction to Op3q is so, too, and Op3q is a Lie group. Since pdet gq2 “ det g det gt “ 1 for all
g P Op3q, the subgroup SOp3q “ Op3q X det´1pRą0q is open in Op3q, and Op3q is the disjoint union
of SOp3q and ´SOp3q. Moreover, SOp3q becomes a Lie group.

The Lie algebra op3q of Op3q coincides with the Lie algebra sop3q of SOp3q and can be determined
via the submersion f , too. More precisely

op3q “ sop3q “ kerT1f “
 

A P glp3,Rq
ˇ

ˇ At `A “ 0
(

,

and sop3q is the space of all skew-symmetric real 3ˆ3 matrices. Note that trA “ 0 for every element
A P sop3q.

6.2.2 Theorem The Lie algebras
`

R3,ˆ
˘

and sop3q are isomorphic. An isomorphism is given by the
map

M : R3 Ñ sop3q, ~x “

¨

˝

x1

x2

x3

˛

‚ ÞÑM~x “

¨

˝

0 ´x3 x2

x3 0 ´x1

´x2 x1 0

˛

‚

Denoting by ~e1, ~e2, ~e3 the standard basis of R3, the elements

Jx “ J1 “M~e1 “

¨

˝

0 0 0
0 0 ´1
0 1 0

˛

‚,

Jy “ J2 “M~e2 “

¨

˝

0 0 1
0 0 0
´1 0 0

˛

‚,

Jz “ J3 “M~e3 “

¨

˝

0 ´1 0
1 0 0
0 0 0

˛

‚

form a basis of the Lie algebra sop3q. These elements are sometimes called the (standard) infinitesimal
generators of rotations.

Proof. By definition M is linear. Moreover, the images M~ek , k “ 1, 2, 3, are linearly independent, so
by dimension reasons the map M is a linear isomorphism. It remains to show that M preserves the
Lie brackets. To this end compute for ~x, ~y P R3

~xˆ ~y “

¨

˝

x1

x2

x3

˛

‚ˆ

¨

˝

y1

y2

y3

˛

‚“

¨

˝

x2 y3 ´ x3 y2

x3 y1 ´ x1 y3

x1 y2 ´ x2 y1

˛

‚ ,
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and then

M~x ¨M~y “

¨

˝

0 ´x3 x2

x3 0 ´x1

´x2 x1 0

˛

‚¨

¨

˝

0 ´y3 y2

y3 0 ´y1

´y2 y1 0

˛

‚“

“

¨

˝

´x3 y3 ´ x2 y2 x2 y1 x3 y1

x1 y2 ´x3 y3 ´ x1 y1 x3 y2

x1 y3 x2 y3 ´x2 y2 ´ x1 y1

˛

‚ .

Forming the commutator gives

“

M~x,M~y

‰

“

¨

˝

0 x2 y1 ´ x1 y2 x3 y1 ´ x1 y3

x1 y2 ´ x2 y1 0 x3 y2 ´ x2 y3

x1 y3 ´ x3 y1 x2 y3 ´ x3 y2 0

˛

‚“M~xˆ~y .

Hence M preserves Lie brackets and the claim is proved.

6.2.3 Now let us consider the special unitary group

SUp2q “
 

g P GLp2,Cq
ˇ

ˇ @v, w P C2 : xgv, gwy “ xv, wy& det g “ 1
(

.

To verify that SUp2q is a Lie group let f be the map

f : GLp2,Cq Ñ Hermp2q, g ÞÑ g˚g ,

where Hermpnq denotes the space of hermitian nˆn matrices. The tangent map of f at g P GLp2,Cq
is given by

Tgf : glp2,Cq Ñ Hermp2q, A ÞÑ A˚g ` g˚A .

For given H P Hermp2q let A “ 1
2pg

˚q´1H. Then

TgfpAq “
1

2
pH˚ `Hq “ H ,

which entails that f is a submersion. Hence Up2q “ f´1pI2q is a real Lie group of dimension
dimR GLp2,Cq ´ dimRHermp2q “ 8´ 4 “ 4. Recall that Up2q is the unitary group in dimension 2.
The Lie algebra of Up2q is given by up2q “ kerT1f , the space of all skew-hermitian 2ˆ 2 matrices.
The determinant function det : Up2q Ñ S1 is a smooth group homomorphism and a submersion. The
latter is true because for all A P up2q

T1 detpAq “
B

Bt

ˇ

ˇ

ˇ

ˇ

t“0

detpexpptAqq “
B

Bt

ˇ

ˇ

ˇ

ˇ

t“0

et trA “ trA ,

and because the matrix A “ i1 P glp2,Cq is skew-hermitian and its trace trA “ 2 i spans liepS1q “

R i . Therefore, SUp2q is a real Lie group of dimension dimR Up2q´dimRR i “ 3 and with Lie algebra
sup2q given by the skew-hermitian matrices of trace 0.

6.2.4 Proposition The Lie group SUp2q is homeomorphic to S3, so in particular compact and simply
connected. A homeomorphism is given by

Ψ : S3 ÞÑ SUp2q, px0, x1, x2, x3q ÞÑ

ˆ

x0 ` x1 i x2 ` x3 i
´x2 ` x3 i x0 ´ x1 i

˙

.
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Proof. One has for px0, x1, x2, x3q P S3

ˆ

x0 ` x1 i x2 ` x3 i
´x2 ` x3 i x0 ´ x1 i

˙

¨

ˆ

x0 ´ x1 i ´x2 ´ x3 i
x2 ´ x3 i x0 ` x1 i

˙

“ 1 ,

hence the matrix Ψpx0, x1, x2, x3q is unitary. So Ψ is well-defined. The map Ψ is obviously continuous
and injective. It remains to show that Ψ is surjective, because then, by compactness of the 3-sphere,
the map Ψ is a homeomorphism and SUp2q has to be compact. Let

g “

ˆ

z u
v w

˙

be a unitary matrix with determinant being 1 that is zw ´ uv “ 1. By unitarity and the formula for
the inverse of a 2ˆ 2 matrix one obtains the equality

ˆ

w ´u
´v z

˙

“

ˆ

z v
u w

˙

,

hence w “ z and v “ ´u. Inserting this in the equation for the determinant entails that |z|2`|u|2 “ 1.
Now write z “ x0 ` x1 i and u “ x2 ` x3 i with real x0, x1, x2, x3. Then px0, x1, x2, x3q P S3 and
g “ Ψpx0, x1, x2, x3q, so Ψ is surjective and the proposition is proved.

6.2.5 Proposition Consider the space

Hermtr0p2q “ i sup2q “
 

X P glp2,Cq
ˇ

ˇ X˚ “ X & trX “ 0
(

of all traceless hermitian 2ˆ 2 matrices. Then Hermtr0p2q is a real vector space of dimension 3 with
a basis given by the Pauli matrices

σ1 “

ˆ

0 1
1 0

˙

, σ2 “

ˆ

0 ´ i
i 0

˙

, σ3 “

ˆ

1 0
0 ´1

˙

and with inner product

x¨, ¨yhtr0 : Hermtr0p2q ˆ Hermtr0p2q Ñ R, pX,Y q ÞÑ ´
1

2
pdetpX ` Y q ´ detX ´ detY q

and corresponding norm

} ¨ }htr0 : Hermtr0p2q Ñ Rě0, X ÞÑ
a

´detpXq .

An isometric isomorphism between
`

R3, x¨, ¨y
˘

and
`

Hermtr0p2q, x¨, ¨yhtr0

˘

is given by

~σ : R3 Ñ Hermtr0p2q, ~x ÞÑ ~σ ¨ ~x “
3
ÿ

k“1

xk σk .

Its inverse maps X P Hermtr0p2q to the vector ~x with components xk “ 1
2 trpXσkq, where k “ 1, 2, 3.
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Proof. Let X “

ˆ

a z
w d

˙

P Hermtr0p2q. Then a, d P R and w “ z, since X is hermitian. The

assumption trX “ 0 implies d “ ´a. Hence X is of the form
ˆ

a b` c i
b´ c i ´a

˙

“ aσ3 ` cσ1 ` bσ2

with a, c, d P R, and any such matrix is an element of Hermtr0p2q. Since the Pauli matrices are
obviously linearly independent, they therefore form a basis of Hermtr0p2q.

Next compute for ~x “ px1, x2, x3q P R3

det p~σ ¨ ~xq “ det

ˆ

x3 x2 ` x1 i
x2 ´ x1 i ´x3

˙

“ ´px3q2 ´ px1q2 ´ px2q2 “ ´}~x}2 . (A.6.2.1)

Hence the map Hermtr0p2q Ñ Rě0, X ÞÑ
a

´detpXq is a norm on Hermtr0p2q which has to fullfill
the parallelogram identity since the euclidean norm } ¨ } does.

The norm on Hermtr0p2q is therefore induced by an inner product which can be recovered by the
polarization identity (A.3.1.9) that is by

xX,Y yhtr0 “ ´
1

2
pdetpX ` Y q ´ detX ´ detY q for all X,Y P Hermtr0p2q .

Moreover, ~σ preserves norms by (A.6.2.1), hence is an isometry.

For the remaining part of the claim check first that pσkq2 “ 1 for k “ 1, 2, 3 and that

σ1 σ2 “

ˆ

i 0
0 ´ i

˙

“ iσ3, σ2 σ3 “

ˆ

0 i
i 0

˙

“ iσ1, σ3 σ1 “

ˆ

0 1
´1 0

˙

“ iσ2 . (A.6.2.2)

Since the Pauli matrices are hermitian, forming the hermitian conjugate on both sides of these equa-
tions entails

σ2 σ1 “ ´ iσ3, σ3 σ2 “ ´ iσ1, σ1 σ3 “ ´ iσ2 . (A.6.2.3)

Now compute for ~x P R3 and k “ 1, 2, 3

1

2
tr pp~x ¨ ~σqσkq “

1

2
tr
`

xk pσkq
2
˘

“ xk .

The proposition is proved.

6.2.6 Lemma For i, j P t1, 2, 3u the Pauli matrices satisfy the following commutation relations:

rσi, σjs “ 2 i
3
ÿ

k“1

εijk σk ,

where for i, j, k P t1, 2, 3u the Levi-Civita symbol εijk is defined by

εijk “

$

’

&

’

%

1 if pi, j, kq is an even permutation of p1, 2, 3q,
´1 if pi, j, kq is an odd permutation of p1, 2, 3q, and
0 else.
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6.2.7 Remark Recall that a permutation of p1, 2, 3q is even if and only if it is cyclic.

Proof. The commutation relations follow immediately from equations (A.6.2.2) and (A.6.2.3) in the
proof of the preceding proposition.

6.2.8 Theorem The matrices

τ1 “
1

i
σ1 “

ˆ

0 ´ i
´ i 0

˙

, τ2 “
1

i
σ2 “

ˆ

0 ´1
1 0

˙

, τ3 “
1

i
σ3 “

ˆ

´ i 0
0 i

˙

form a basis of the Lie algebra sup2q and obey the commutation relations

rτi, τjs “ 2τk for every cyclic permutation pi, j, kq of p1, 2, 3q . (A.6.2.4)

Moreover, the linear map Φ : sup2q Ñ R3 uniquely defined by τk ÞÑ 2ek for k “ 1, 2, 3 is an
isomorphism of Lie algebras, where R3 carries the Lie algebra structure given by the cross product
ˆ. In particular, the Lie algebras sup2q and sop3q are isomorphic with an isomorphism given by the
composition

M ˝ Φ : sup2q Ñ sop3q,
3
ÿ

k“1

xkτk “

ˆ

´x3 i ´x2 ´ x1 i
x2 ´ x1 i x3 i

˙

ÞÑ 2

¨

˝

0 ´x3 x2

x3 0 ´x1

´x2 x1 0

˛

‚ ,

where M : R3 Ñ sop3q is the isomorphism from Theorem 6.2.2.

Proof. Since multiplication by ´ i is a real linear isomorphism from Hermtr0p2q to sup2q and since
the Pauli matrices form a basis of Hermtr0p2q, the matrices τk, k “ 1, 2, 3, form a basis of sup2q.
The commutation relations (A.6.2.4) are an immediate consequence of the preceding lemma. The
Lie bracket is preserved by Φ since

p2eiq ˆ p2ejq “ 2p2ekq for every cyclic permutation pi, j, kq of p1, 2, 3q .

The rest of the claim now follows by definition of Φ and Theorem 6.2.2.

6.2.9 Theorem For every g P SUp2q the linear map

πg : R3 Ñ R3, ~x ÞÑ ~σ´1
`

gp~σ ¨ ~xqg˚
˘

is an orthogonal transformation. Moreover, the map

π : SUp2q Ñ SOp3q, g ÞÑ πg

is a differentiable surjective group homomorphism with kernel t˘I2u – Z{2. In particular, π is the
universal covering map of SOp3q. Finally, the tangent map T1π : sup2q Ñ sop3q coincides with the
isomorphism M ˝ Φ from Theorem 6.2.8.

Proof. Observe that detpgAg˚q “ detA and trpgAg˚q “ trpAq for all g P SUp2q and A P

Hermtr0p2q. This together with the fact that ~σ is an isometric isomorphism from pR3, } ¨ }q to
pHermtr0p2q,

a

´detp ¨ qq entails that the transformations πg are orthogonal.
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A.6.3. The Lorentz group SOp1, 3q and its universal cover SLp2,Cq

to do: change signature from p´,`,`,`q back to p`,´,´,´q.

6.3.1 Recall from Examples 6.1.3 (a) that theMinowski inner product of two elements x “ px0, x1, x2, x3q P

R4 and y “ py0, y1, y2, y3q P R4 is defined by xx, yyM “ x0y0 ´
ř3
k“1 x

kyk, and that R4 endowed
with the Minkowski inner product is denoted R1,3. The signature of the Minowski inner product there-
fore is p`,´,´,´q or in other terms p1, 3q. As usual we call R1,3 Minkowski space of (space-time)
dimension 4.

Recall from Examples 6.1.8 (b) that the pseudo-orthogonal group Op1, 3q consists of all g P GLp4,Rq
such that

xgx, gyyM “ xx, yyM for all x, y P R4 .

Following common language in mathematical physics we call Op1, 3q the Lorentz group in space-time
dimension 4. The subgroup

SOp1, 3q “ tg P Op1, 3q | det g “ 1u Ă Op1, 3q

is called the proper Lorentz group. Let us show that the Lorentz groups Op1, 3q and SOp1, 3q are Lie
groups. To this end put

η “

¨

˚

˚

˝

1 0 0 0
0 ´1 0 0
0 0 ´1 0
0 0 0 ´1

˛

‹

‹

‚

and observe that xx, yyM “ xx, ηyy for all x, y P R4, where x´,´y denotes the euclidean inner
product. Hence a matrix Λ P GLp4,Rq lies in Op1, 3q if and only if

ΛtηΛ´ η “ 0 . (A.6.3.1)

Following standard language in mathematical physics we call every such Λ a Lorentz transformation.
The map f : GLp4,Rq Ñ Symp4,Rq, Λ ÞÑ ΛtηΛ´ η is smooth and has derivative

TΛf : Matp4,Rq Ñ Symp4,Rq, A ÞÑ AtηΛ` ΛtηA

at Λ P GLp4,Rq. The derivative at Λ is surjective since TΛf
`

1
2ηpΛ

tq´1B
˘

“ B for allB P Symp4,Rq.
Hence f is a submersion and the preimage Op1, 3q “ f´1p0q a Lie subgroup of GLp4,Rq. The Lie
algebra op1, 3q of the Lorentz group then consists of the kernel of T1f that is of a all matrices
A PMatp4,Rq such that

Atη ` ηA “ 0 . (A.6.3.2)

Since dim op1, 3q “ dimMatp4,Rq´dimSymp4,Rq “ 16´ 10 “ 6, one concludes that the Lorentz
group Op1, 3q is a Lie group of (real) dimension 6. By (A.6.3.1), the determinant of a Lorentz
transformation Λ P Op1, 3q fulfills | detpΛq| “ 1. Moreover, time reversal

T “

¨

˚

˚

˝

´1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚
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and parity inversion

P “

¨

˚

˚

˝

1 0 0 0
0 ´1 0 0
0 0 ´1 0
0 0 0 ´1

˛

‹

‹

‚

are both Lorentz transformations with determinant ´1. One concludes that SOp1, 3q is a Lie subgroup
of the Lorentz group Op1, 3q and that the latter is the disjoint union of SOp1, 3q and SOp1, 3q ¨ T “
SOp1, 3q ¨ P .

6.3.2 The special linear group SLp2,Cq consists of all g P GLp2,Cq such that det g “ 1. It is a
complex Lie group by the following argument. Observe that the determinant det : GLp2,Cq Ñ C is
a complex differentiable group homomorphism. Its (complex) tangent map at the identity 1 is given
by

T1 det : glp2,Cq Ñ C, A ÞÑ
B

Bz

ˇ

ˇ

ˇ

ˇ

z“0

det exppzAq “
B

Bz

ˇ

ˇ

ˇ

ˇ

z“0

ez trpAq “ trA .

This entails that T1 det pz1q “ 2z for each z P C hence det is a holomorphic submersion and
SLp2,Cq “ det´1p1q a complex Lie group.

6.3.3 Proposition The Lie group SLp2,Cq is simply-connected.

Proof. We first show that SLp2q is path-connected. So let g P SLp2Cq. Then transform g into Jordan
normal form that is choose S P GLp2,Cq such that

SgS´1 “

ˆ

a1 e
0 a2

˙

,

where a1, a2 P C with a1a2 “ 1 and e P t0, 1u. Then choose a path γ1 : r0, 1s Ñ Cˆ “ Czt0u such
that γ1p0q “ 1 and γ1p1q “ a1. Let γ2 : r0, 1s Ñ Cˆ be the path which maps t to γ2ptq “

`

γ1ptq
˘´1.

Now put

hptq “ S´1

ˆ

γ1ptq te
0 γ2ptqq

˙

.

Then h : r0, 1s Ñ SLp2,Cq is a continuous path connecting hp0q “ I2 with hp1q “ g. So SLp2,Cq is
path-connected.

Next we prove that SLp2,Cq is simply-connected. To this end recall that the subgroup SUp2q Ă
SLp2,Cq is simply-connected. So to verify that π1

`

SLp2,Cq
˘

is trivial it suffices to construct a
(strong) deformation retraction from SLp2,Cq onto SUp2q which means that we have to construct a
continuous map r : SLp2,Cq ˆ r0, 1s Ñ SLp2,Cq such that

r0 “ id, r1

`

SLp2,Cq
˘

Ă SUp2q, and rt|SUp2q “ idSUp2q for all t P r0, 1s .

Here, as usual, rt stands for the map SLp2,Cq Ñ SLp2,Cq, g ÞÑ rpg, tq.

Let us agree on the following notation. For every matrix a “
ˆ

a11 a12

a21 a22

˙

PMatp2ˆ2,Cq we denote

by ai with i “ 1, 2 the column vector
ˆ

a1i

a2i

˙

and write a “ pa1, a2q. Vice versa, if ai “
ˆ

a1i

a2i

˙

P C2
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with i “ 1, 2 are two (column) vectors then we denote by pa1, a2q the matrix a “
ˆ

a11 a12

a21 a22

˙

.

If now g P SLp2,Cq with column vectors g1, g2, then we know that g1 and g2 form a basis of C2.
Gram–Schmidt orthonormalization will transform the basis pg1, g2q into an orthonormal basis pu1, u2q:

pg1, g2q ÞÑ pu1, u2q “

ˆ

g1

}g1}
,
g2 ´ xg2, u1yu1

}g2 ´ xg2, u1yu1}

˙

.

Therefore, Gram–Schmidt orthonormalization can be understood as a retraction from SLp2,Cq to
SUp2q leaving SUp2q invariant. So we are almost done, we just need to make the Gram–Schmidt
process “continuous” in the sense that it can be deformed to the identity.

To achieve this define the following matrices depending on the parameter t P r0, 1s:

ptpgq “

˜

1
}g1}

t 0

0 1

¸

, qtpgq “

ˆ

1 ´txg2, u1y

0 1

˙

, rptpgq “

˜

1 0
0 1

}g3}
t

¸

,

where u1 “
g1

}g1}
and g3 “ g2 ´ xg2, u1yu1. Each of these matrices lies in GLp2,Cq since their

determinant is non-zero. Now we define r : SLp2,Cq ˆ r0, 1s Ñ SLp2,Cq by

rpg, tq “ g ¨ ptpgq ¨ qtpgq ¨ rptpgq , where g P SLp2,Cq, t P r0, 1s .

Then r0pgq “ g, r1pgq “ pu1, u2q P SUp2q (since pu1, u2q is an orthonormal basis of C2), rpg, tq “ g
if g P SUp2q, and rpg, tq P SLp2,Cq for all g P SLp2,Cq, t P r0, 1s. The last property is the only not
obvious one and needs to be verified because it guarantees that r is well-defined. The other properties
are immediate and just tell that r is a strong deformation retraction of the kind we have been looking
for.

We check two identies from which the remaining claim will follow immediately. For every g “
ˆ

g11 g12

g21 g22

˙

P SLp2,Cq compute

1 “ det g ¨ det g “ pg11 g22 ´ g21 g12q ¨ p g11 g22 ´ g21 g12 q “

“
`

|g11|
2 |g22|

2 ` |g21|
2 |g12|

2
˘

´ 2Repg11 g22 g21 g12q “

“
`

|g11|
2 |g12|

2 ` |g11|
2 |g22|

2 ` |g21|
2 |g12|

2 ` |g21|
2 |g22|

2
˘

´

´
`

|g11|
2 |g12|

2 ` |g21|
2 |g22|

2 ` 2Repg11 g22 g21 g12q
˘

“ }g1}
2
}g2}

2
´ |xg1, g2y|

2 .

Then

det rpg, tq “ det g det ptpgq det qtpgq det rptpgq “

ˆ

1

}g1} }g3}

˙t

“

“

¨

˝

1

}g1}
¨

}g1}
b

}g1}
2
}g2}

2
´ |xg1, g2y|

2

˛

‚

t

“

¨

˝

1
b

}g1}
2
}g2}

2
´ |xg1, g2y|

2

˛

‚

t

“ 1 ,

which means that rpg, tq is in fact an element of SLp2,Cq for all g P SLp2,Cq and t P r0, 1s. This
finishes the proof.
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6.3.4 Proposition Consider the space

Hermp2q “
 

X P glp2,Cq
ˇ

ˇ X˚ “ X
(

of all hermitian 2ˆ2 matrices. Then Hermp2q is a real vector space of dimension 4 with a basis given
by the identity matrix plus the Pauli matrices that is by

σ0 “

ˆ

1 0
0 1

˙

, σ1 “

ˆ

0 1
1 0

˙

, σ2 “

ˆ

0 ´ i
i 0

˙

, σ3 “

ˆ

1 0
0 ´1

˙

The bilinear form

x¨, ¨yh : Hermp2q ˆ Hermp2q Ñ R, pX,Y q ÞÑ
1

2
pdetpX ` Y q ´ detX ´ detY q

is symmetric, non-degenerate, and has signature p1, 3q. An isometric isomorphism between
`

R1,3, x¨, ¨yM
˘

and pHermp2q, x¨, ¨yhq is given by

σ : R1,3 Ñ Hermp2q, x ÞÑ σ ¨ x “
3
ÿ

k“0

xk σk .

Its inverse maps X P Hermp2q to the vector x with components xk “ 1
2 trpXσkq, where k “ 0, 1, 2, 3.

6.3.5 Theorem For every g P SLp2,Cq the linear map

πg : R4 Ñ R4, x ÞÑ σ´1
`

gpσ ¨ xqg˚
˘

is a proper orthochronous Lorentz transformation. Moreover, the map

π : SLp2,Cq Ñ SOÒp1, 3q, g ÞÑ πg

is a differentiable surjective group homomorphism with kernel t˘I2u – Z{2. In particular, the tangent
map T1π : slp2,Cq Ñ sop1, 3q is an isomorphism and π is the universal covering map of SOÒp1, 3q.

Proof. Every element g P SLp2,Cq induces a linear isomorphism

αg : Hermp2q Ñ Hermp2q, X ÞÑ gXg˚

which is isometric since detpαgXq “ detX for all X P Hermp2q. By Proposition 6.3.4, σ : R1,3 Ñ

Hermp2q is an isometric isomorphism, hence πg “ σ ˝αg ˝ σ
´1 leaves the Minkowski metric invariant

and therefore is a Lorentz transformation.
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A.7.1. Fiber bundles

Fibered manifolds and fibered charts

7.1.1 Definition By a locpro-fibered manifold we understand a smooth surjective submersion π :
E Ñ M from a locpro-manifold E onto a manifold M . If E is a finite dimensional manifold, one
calls a surjective submersion π : E ÑM just a fibered manifold. One usually calls π the projection,
E the total space andM the base of the (pro-)fibered manifold. A (locpro-) fibered manifold is often
denoted as a triple pE, π,Mq.

A morphism of (locpro-) fibered manifolds π1 : E1 Ñ M1 and π2 : E2 Ñ M2 consists of a pair
pϕ, fq of smooth maps ϕ : E1 Ñ E2 and f : M1 ÑM2 such that the diagram

E1 M1

E2 M2

π1

ϕ f

π2

commutes. One sometimes also says in this situation that ϕ is a morphism of (locpro-) fibered
manifolds over the map f : M1 Ñ M2. We in particular make use of this language when the base
manifolds M1 and M2 coincide and f is the identity map. We then just say that ϕ is a morphism of
(locpro-) fibered manifolds.

7.1.2 Obviously, the identity map idE on the total space of a (locpro-) fibered manifold pE, π,Mq is
a morphism. Moreover, the composition

pϕ2, f2q ˝ pϕ1, f1q :“ pϕ2 ˝ ϕ1, f2 ˝ f1q

of morphisms

pϕ1, f1q : pE1, π1,M1q Ñ pE2, π2,M2q and pϕ2, f2q : pE2, π2,M2q Ñ pE3, π3,M3q

is a morphism of (pro-)fibered manifolds from pE1, π1,M1q to pE2, π2,M2q, and idE acts as identity
morphism. One concludes that (locpro-)fibered manifolds and their morphisms form a category.

7.1.3 Definition Let pE, π,Mq be a fibered manifold. By a fibered chart of pE, π,Mq or a chart
adapted to π : E ÑM one understands a chart pU,ψq :.

7.1.4 Proposition Given a locpro-fibered manifold pE, π,Mq, the fiber Fp :“ π´1ppq over an ele-
ment p PM is a locpro-manifold.
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Proof. In the case where E is finite dimensional the claim is an immediate consequence of the
submersion theorem So assume that E is infinite dimensional. Since the claim is local, we can
assume that there exists a smooth projective representation pEi, ηij , ηiqi,jPN, iďj of E. Since M is
finite dimensional and using again that the claim is local we can assume that the the smooth map
π : E ÑM factors in a neighborhood of Fp through some smooth map πi : Ei ÑM that means that
π “ πi ˝ ηi. Since π is a smooth surjective submersion, πi is so, too. Therefore, Fi :“ π´1

i ppq is a
submanifold of Ei by the submersion theorem. Now put πj :“ πi ˝ηij for all j ą i. As a composition
of surjective submersions each such πj is a surjective submersion as well. Hence for every j ą i the
preimage Fj :“ π´1

j ppq “ η´1
ij pFiq is a submanifold of Ej . Since π “ πi˝ηi “ πi˝ηij˝ηj “ πj˝ηj , the

fiber Fp coincides with η´1
j pFjq for each j ě i. Hence we obtain a smooth projective representation

pFj , ϕjk, ϕjqj,kPN jďk of Fp, when defining ϕjk as the restriction ηjk|Fk and ϕj as the restriction
ηj |Fp . So Fp is a pro-manifold and the claim is proved.

7.1.5 Proposition A locpro-fibered manifold has local smooth sections that is for every locpro-fibered
manifold pE, π,Mq and every point p P M there exists as smooth map s : U Ñ E defined on an
open neighborhood U of p in M such that π ˝ s “ idU .
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A.8.1. A combinatorial interlude

Multi-Indices

8.1.1 Assume that I is a non-empty set which we call index set. By a multi-index over I we then
understand an element α P NpIq that is a family α “ pαiqiPI of natural numbers such that only finitely
many αi are non-zero. The order of such a multi-index is defined by |α| :“

ř

iPI αi. For k P N and
k1 P N and k2 P NY t8u with k1 ď k2 we denote by NpIqk the set of all multi-indices over I of order
k and by NpIqk1,k2

the set of all multi-indices of order less or equal k2 which have order greater or equal
k1. For reasons of clarity, which will be become obvious below, we sometimes also refer to an element
of NpIq as a Greek multi-index.

8.1.2 Example In most cases the index set I will be of the form I “ t1, . . . , du or of the form
I “ t0, . . . , d ´ 1u for some positive integer d. One then has NpIq “ NI “ Nd and multi-indices are
given by d-tuples of the form α “ pα1, . . . , αdq or β “ pβ0, . . . , βd´1q, respectively.

8.1.3 The space of multi-indices NpIq carries the structure of a module over the semiring N in the sense
of Johnson & Manes (1970) that is NpIq together with componentwise addition is an abelian monoid,
componentwise multiplication with scalars is associative, 0 acts as zero map, 1 acts as identity, and
the distributivity laws hold true. Moreover, NpIq is free over the family of multi-indices p1iqiPI defined
by

1ipjq :“

#

1 for j “ i,

0 else.

8.1.4 By a Roman multi-index of a given order k P Ną0 over some index set I we understand an
element I of the cartesian product Ik. For k “ 0 we define I0 as the set tOu, where O is a fixed set
not appearing as an element of I. We call O the Roman multi-index of order 0 over I. We sometimes
write |I| for the order of a Roman multi-index. Note that we denote elements of Ik by capital Roman
letters I, J, . . . and their components by their respective small Roman letters il, jl, and so on.

For k ě 1 the symmetric group Sk acts in a canoncial way on Ik. We denote the orbit space of
this action by Ik and the orbit through a Roman multi-index I P Ik by I. In other words I is the
equivalence class of all Roman multi-indices obtained from I by permutation of its components. For
k “ 0 we identify I0 with I0 and O with O.
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For Roman multi-indices I “ pi1, . . . , ikq P Ik and J “ pj1, . . . , jlq P Il of positive order we denote
by I` J the multi-index pi1, . . . , ik, j1, . . . , jlq P Ik`l. Obviously, the equivalence class I` J depends
only on the equivalence classes I and J, hence the operation ` descends to a map

` : Ik{Sk ˆ Il{Sl Ñ Ik`l{Sk`l .

It is straightforward to see that this operation is associative and commutative. Next define

I` O “ O` I “ I and I` O “ O` I “ I

for all Roman multi-indices I and put I‚ :“ I‚{„, where I‚ :“
Ů

kPN Ik and „ is orbit equivalence
which defines two Roman multi-indices I P Ik and J P Il as equivalent if k “ l and I “ J. Then
I‚ “

Ů

kPN Ik. Moreover, I‚ together with ` as binary operation and O as zero element becomes an
abelian monoid.

Note that every i P I can be regarded as a Roman multi-index of order 1 and that i “ i, so we have
the sums I` i “ pi1, . . . , ik, iq and I` i “ pi1, . . . , ik, iq. Sometimes we also write Ii respectively Ii
for these sums.

8.1.5 Lemma Assume that I is totally ordered by some order relation ď. Then every element of Ik

of order k P Ną0 has a unique representative I “ pi1, . . . , ikq P Ik such that i1 ď i2 ď . . . ď ik. We
call such a representative an ordered Roman multi-index or an increasing representative.

Proof. One proves the claim by induction on the order k. For k “ 1 the claim is obvious. Assume that
it holds for some k and let J be a Roman multi-index of order k` 1. Let jm be the maximum of the
components j1, . . . , jk`1, and let σ P Sk`1 be the permutation switching m and k` 1 and acting by
identity on the rest. By hypothesis there exists a permutation τ P Sk such that jστp1q ď . . . ď jστpkq.
Put τpk` 1q “ k` 1. Then τ P Sk`1 and I “ pjστp1q, . . . , jστpk`1qq is a representative of J with the
desired properties. This finishes the inductive step and the claim is proved.

8.1.6 Proposition Let I be an index set with a total order ď on it and κ : NpIq Ñ I‚ the map
which maps the zero map 0I : IÑ N to O and a Greek multi-index α of positive order to the Roman
multi-index

`

i1, . . . , i1
l jh n

αi1 times

, i2, . . . , i2
l jh n

αi2 times

, . . . , il, . . . , il
l jh n

αil times

˘

,

where i1 ă . . . ă il are the (pairwise distinct and ordered) elements i P I with non-vanishing
component αi. Then the induced map κ : NpIq Ñ I‚, α ÞÑ κpαq is an isomorphism of monoids and
maps the space NpIqk of Greek multi-indices of order k onto Ik. Moreover, if I is finite, then NpIqk and
Ik are finite as well and both have cardinality given by

|NI
k| “ |I

k| “
1

k!

k´1
ź

l“0

`

|I| ` l
˘

.

Proof. First we need to show that κ is a bijection. To this end let us make our notation somewhat
more precise and choose for each α P NpIqzt0Iu the elements iα1 , . . . , i

α
lα
P I so that iα1 ă . . . ă iαlα ,

αiαj ą 0 for j “ 1, . . . , lα and αi “ 0 for all i P Iztiα1 , . . . , i
α
lα
u. Then

κpαq “
`

iα1 , . . . , i
α
1

l jh n

αiα1
times

, iα2 , . . . , i
α
2

l jh n

αiα2
times

, . . . , iαlα , . . . , i
α
lα

l jh n

αiα
lα

times

˘

.
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By construction, κpαq is of increasing form. For each element I P I‚ let I be the representative of
increasing form. Define λpIq P NpIq as follows. If I “ O, put λpIq “ 0I. If I ‰ O, let iI1 ă . . . ă iIlI
be the elements of I which appear in I. Then, for each j “ 1, . . . , lI define αI

iIj
to be the number of

times the index iIj appears in I. For i P I not appearing among the iIj put α
I
i “ 0. Then define

λpIq “ αI “
`

αI
i

˘

iPI
.

So we obtain a map λ : I‚ Ñ NpIq. For given I ‰ O one has by definition lαI “ lI and iα
I

1 “

iI1, . . . , i
αI

l “ iIl where l “ lαI “ lI . Moreover, the index i “ iα
I

j , j “ 1, . . . , l appears in κ
`

λpIq
˘

exactly αI
i times which coincides with the number i appears in I. Hence κ

`

λpIq
˘

“ I. Now assume
α P NIzt0Iu to be given and let I “ κpαq. Then lI “ lα and iI1 “ iα1 , . . . , i

I
l “ iαl for l “ lI “ lα.

For each of the indices i “ iIj , j “ 1, . . . , l, the i-th component of λ
`

κpαq
˘

coincides with αi. Hence
λ
`

κpαq
˘

“ α, which finishes the proof that κ is a bijection with inverse λ.

By construction of κ one has |κpαq| “ |α| for all Greek multi-indices α which entails that for every
k P N the bijection κ maps NpIqk onto Ik.

Also by construction it is clear that κpα` βq “ κpαq ` κpβq for all α, β P NpIq and that κp0Iq “ O.
Hence κ is a morphism of monoids.

Now we will prove the formula for the cardinality of NI
k by double induction on k and the cardinality

of the index set I. Obviously |NI
0| “ 1, so the claim holds for k “ 0 and all finite index sets. Assume

that it holds for some natural k and all finite index sets. Now let I be an index set of cardinality 1.
Then |NI

k`1| “ 1 since there is only one natural number with absolute value k ` 1. Next assume
that the claim holds for k ` 1 and all index sets of cardinality less than d. Let I be an index set of
cardinality d. Order the elements of I in some way so that I “ ti1, . . . , idu and i1 ă . . . ă id. The
set NI

k`1 is then the disjoint union of the set of all α P NI
k`1 such that αid “ 0 and the set of all

α P NI
k`1 such that αid ě 1. The first of these sets has cardinality

|Nti1,...,id´1u

k`1 | “
1

k ` 1!

k
ź

l“0

`

d´ 1` l
˘

,

the second has cardinality

|NI
k| “

1

k!

k´1
ź

l“0

`

d` l
˘

since the map
 

α P NI
k`1

ˇ

ˇ αid ě 1
(

Ñ NI
k : α ÞÑ pαi1 , . . . , αid´1

, αid ´ 1q P NI
k

is a bijection. Hence

|NI
k`1| “

1

k ` 1!

k
ź

l“0

`

d´ 1` l
˘

`
1

k!

k´1
ź

l“0

`

d` l
˘

“

“
1

k ` 1!
pd´ 1` k ` 1q

k´1
ź

l“0

`

d` l
˘

“
1

pk ` 1q!

k
ź

l“0

`

d` l
˘

and the induction step is finished. The claim is proved.
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8.1.7 By a block of a Roman multi-index I of positive order we mean a Roman multi-index of the
form

IB “ pib1 , . . . , ib|B|q ,

where B is a subset of t1, . . . ku and the b1, . . . , b|B| P t1, . . . , ku are the elements of B in increasing
order. One can now decompose a multi-index I into blocks as follows. Let tB1, . . . , Bru be a partition
of t1, . . . , ku which we assume to be lexicographically ordered that means that b11 ă b21 ă . . . ă br1,
where Bj “ tbj1, . . . , bj|Bj |u and bjm ă bjn for j “ 1, . . . , r and 1 ď m ă n ď |Bj |. To express that
tB1, . . . , Bru is a lexicographically ordered partition of t1, . . . , ku by r non-empty sets we write

B1 \ . . .\Br “ t1, . . . , ku & H ă B1 ă . . . ă Br .

Now put Ij :“ IBj for j “ 1, . . . , r. Then the Roman multi-indices I and I1 ` . . .` Ir are equivalent
which can be interpreted as I being decomposed into the r blocks I1, . . . , Ir. More precisely, we
call the r-tupel of pairs

`

pI1, B1q, . . . , pIr, Brq
˘

a decomposition of I into r blocks and denote the
space of such decompositions by BlockrpIq. Note that the cardinality of BlockrpIq coincides with the
Sterling number of the second kind

 

k
r

(

which gives the number of ways the set t1, . . . , ku can be
partitioned into r subsets.

Multipowers and multiderivatives

8.1.8 Let M be a manifold and x “ px1, . . . , xdq : U Ñ Rd a local coordinate system. Let
I P t1, . . . , duk be a Roman multi-index of positive order k. Then the product

xI :“ xi1 ¨ . . . ¨ xik (A.8.1.1)

and, for every f P C8pUq, the higher derivative

B|I|f

BxI
:“

Bkf

Bxi1 ¨ . . . ¨ Bxik
(A.8.1.2)

are both invariant under permutations of the components of I, hence depend only on the equivalence
class I. We therefore sometimes write xI for xI and B|I|f

BxI
for B

|I|f
BxI . In order 0 one puts xO :“ xO :“ 1

and B|O|f

BxO
:“ B|O|f

BxO
:“ f . For a multi-index α P Nd one defines as usual

xα :“ px1qα1 ¨ . . . ¨ pxdqαd

and
B|α|f

Bxα
:“

B|α|f

pBx1qα1 ¨ . . . ¨ pBxdqαd
:“

ˆ

B

Bx1

˙α1

¨ . . . ¨

ˆ

B

Bxd

˙αd

f .

If now α and I are related by I “ κpαq, then

xI “ xα and
B|I|f

BxI
“
B|α|f

Bxα

by definition of κ and invariance of the product respectively the higher derivative under permutations
of components of the multi-index.
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8.1.9 Remark Occasionally we need multipowers and multiderivatives over more general index sets.
So let I be an arbitrary but still finite index set. Assume that the components of a coordinate system
x : U Ñ RI are labelled xi where i runs through the elements of I. For I P Ik equations (A.8.1.1) and
(A.8.1.2) then can be used again to define multipowers xI and multiderivatives B

|I|f
BxI . Note that both

objects are invariant under permutations of components of I, too, so the corresponding expressions
where I is replaced by I are also well-defined. Now let α “ pαiqiPI P NI be a Greek multi-index and
f P C8pUq. One then defines

xα :“
ź

iPI

pxiqαi

and
B|α|f

Bxα
:“

ź

iPI

ˆ

B

Bxi

˙αi

f .

One finally checks that when κpαq “ I the equalities xα “ xI and B|α|f
Bxα “

B|I|f

BxI
still hold true in this

more general situation.

The formula of Faà-di-Bruno

8.1.10 Theorem (Combinatorial form of Faà-di-Bruno’s formula) Let I and J denote finite
index sets. Assume that M and N are smooth manifolds and that we are given smooth charts
x : U ãÑ RI and y : V ãÑ RJ over open domains U Ă M and V Ă N . Assume further that
ϕ : U Ñ V is a smooth map. Denote by ϕj : U Ñ R for j P J its components that means
that ϕ “ pϕjqjPJ . Finally let I P Ik be a Roman multi-index of positive order k. Then for every
f P C8pV q the following equality holds true:

B|I|pf ˝ ϕq

BxI
“

k
ÿ

r“1

ÿ

JPJ r
J“pj1,...,jrq

ÿ

B1\...\Br“t1,...,ku
HăB1ă...ăBr

˜

B|J|f

ByJ
˝ϕ

¸

¨
B|IB1

|ϕj1

BxIB1
¨ . . . ¨

B|IBr |ϕjr

BxIBr
. (A.8.1.3)

Proof. We prove the claim by induction on the length of the multi-index I. Assume to be given a
Roman multi-index I P Ik of length k “ |I| “ 1. Then there exists a unique i P I such that I “ piq.
By the chain rule one computes

B|I|pf ˝ ϕq

BxI
“
Bpf ˝ ϕq

Bxi
“

ÿ

jPJ

ˆ

Bf

Byj
˝ ϕ

˙

¨
Bϕj

Bxi
“

ÿ

JPJ 1

J“pj1q

ÿ

B1“t1u

˜

B|J|f

ByJ
˝ϕ

¸

¨
B|IB1

|ϕj1

BxIB1
,

hence the claim holds true for k “ 1.

Now assume that for some k ě 1 the claim holds for all Roman multi-indices of order ď k over I.
Assume that I “ pi1, . . . , ik`1q is a Roman multi-index of order k ` 1 over I. Then I “ K ` ik`1,
where K “ pi1, . . . , ikq is a Roman multi-index of order k. Using the induction hypothesis for K, the
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product and the chain rule one obtains

B|I|pf ˝ ϕq

BxI
“

B

Bxik`1

B|K|

BxK
f ˝ ϕ “

“
B

Bxik`1

k
ÿ

r“1

ÿ

JPJ r
J“pj1,...,jrq

ÿ

B1\...\Br“t1,...,ku
HăB1ă...ăBr

˜

B|J|f

ByJ
˝ϕ

¸

¨
B|KB1

|ϕj1

BxKB1
¨ . . . ¨

B|KBr |ϕjr

BxKBr
“

“
B

Bxik`1

k
ÿ

r“1

ÿ

JPJ r
J“pj1,...,jrq

ÿ

B1\...\Br“t1,...,ku
HăB1ă...ăBr

˜

B|J|f

ByJ
˝ϕ

¸

¨
B|IB1

|ϕj1

BxIB1
¨ . . . ¨

B|IBr |ϕjr

BxIBr
“

“

k
ÿ

r“1

ÿ

JPJ r
J“pj1,...,jrq

ÿ

jr`1PJ

ÿ

B1\...\Br“t1,...,ku
HăB1ă...ăBr

˜

B|J|`1f

ByJjr`1
˝ϕ

¸

¨
B|IB1

|ϕj1

BxIB1
¨ . . . ¨

B|IBr |ϕjr

BxIBr

Bϕjr`1

Bxik`1
`

`

k
ÿ

r“1

r
ÿ

l“1

ÿ

JPJ r
J“pj1,...,jrq

ÿ

B1\...\Br“t1,...,ku
HăB1ă...ăBr

˜

B|J|f

ByJ
˝ϕ

¸

¨
B|IB1

|ϕj1

BxIB1
¨ . . . ¨

B
|IBl |`1ϕjl

BxIBl ik`1
¨ . . . ¨

B|IBr |ϕjr

BxIBr
“

“

k`1
ÿ

r“2

ÿ

JPJ r
J“pj1,...,jrq

ÿ

B1\...\Br“t1,...,k`1u
HăB1ă...ăBr“tk`1u

˜

B|J|f

ByJ
˝ϕ

¸

¨
B|IB1

|ϕj1

BxIB1
¨ . . . ¨

B|IBr |ϕjr

BxIBr
`

`

k
ÿ

r“1

ÿ

JPJ r
J“pj1,...,jrq

ÿ

B1\...\Br“t1,...,k`1u
HăB1ă...ăBr‰tk`1u

˜

B|J|f

ByJ
˝ϕ

¸

¨
B|IB1

|ϕj1

BxIB1
¨ . . . ¨

B|IBr |ϕjr

BxIBr
“

“

k`1
ÿ

r“1

ÿ

JPJ r
J“pj1,...,jrq

ÿ

B1\...\Br“t1,...,k`1u
HăB1ă...ăBr

˜

B|J|f

ByJ
˝ϕ

¸

¨
B|IB1

|ϕj1

BxIB1
¨ . . . ¨

B|IBr |ϕjr

BxIBr
.

This concludes the induction step and the theorem is proved.

A.8.2. Jet bundles

8.2.1 Let us fix in this section a smooth finite dimensional fiber bundle πE : E ÑM . Denote by F
its typical fiber and put d “ dimM , n “ dimF . The dimension of the total space E then is given
by dimE “ d ` n. Note that for each point p P M the fiber Fp “ pπEq´1ppq is diffeomorphic to
F .

Recall that Γ8pπEq stands for the sheaf of smooth local sections of πE . Its space of sections over an
open U ĂM consists of all smooth s : U Ñ E such that πE ˝s “ idU and is denoted by Γ8pU, πEq.
When writing s P Γ8pπEq we mean that s is a smooth local section of E defined over some open
subset U “ dom s Ă M . If p P X is a point, then Γ8pp, πEq denotes the space of local smooth
sections about p that is the space of all smooth sections s : U Ñ E defined on an open neighborhood
U Ă X of p. We will write U˝p for the filter basis of all open neighborhoods of p and Γ8p pπ

Eq for the
stalk of Γ8pπEq at p which is defined as the colimit

Γ8p pπ
Eq “ colim

UPU˝p
Γ8pU, πEq “ Γ8pp, πEq{ „p . (A.8.2.1)
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A.8. Jets A.8.2. Jet bundles

Here we have made use of the fact that the colimit can be represented as the quotient of Γ8pp, πEq
by the equivalence relation „p, where equivalence s1 „p s2 of two smooth sections s1 : U1 Ñ E
and s2 : U2 Ñ E over open neighborhoods of p is defined by the existance of an open neighborhood
U Ă U1 X U2 of p such that s1|U :“ s2|U . The equivalence class of a section s P Γ8pp, πEq is
denoted rssp and is called the germ of s at p. So in other words, Γ8p pπ

Eq is the space of all germs
of smooth sections at p. To distinguish „p from the later defined m-equivalence we call the relation
„p germ equivalence at p.

8.2.2 Definition Let p P M be a point in the base manifold M and k P N Y t8u. Two local
smooth sections s1 : U1 Ñ E and s2 : U2 Ñ E defined over open neighborhoods of p are said to be
k -equivalent at p if s1ppq “ s2ppq and if for every fibered chart px, uq : W Ñ Rd ˆ Rn of πE such
that p P πpW q, every index b P t1, . . . , nu and all α P Nd with |α| ď k the equality

B|α|pub ˝ s1q

Bxα
ppq “

B|α|pub ˝ s2q

Bxα
ppq (A.8.2.2)

holds true.

8.2.3 Proposition and Definition Let p PM be a point and k P NY t8u. Then k-equivalence at
p is an equivalence relation on Γ8pp, πEq. It will be denoted by the symbol „k,p. The k-equivalence
class of a smooth section s : U Ñ E at p will be written jkppsq. It is called the k-jet of s at p. The
set of such k-jets at p coincides with the quotient space Jkppπ

Eq “ Γ8pp, πEq{ „k,p. The union

JkpEq “ JkpπEq “
ď

pPM

Jkppπ
Eq

will be called the space of k-jets of sections of the bundle πE : E ÑM . Finally, there is a projection
πk “ πJ

kpEq : JkpπEq ÑM which maps a jet jkppsq, s P Γ8pp, πEq to its footpoint p.

Proof. The relation of k-equivalence at p is obviously reflexive and symmetric by definition. It is also
transitive by transitivity of equality. Hence k-equivalence at p is an equivalence relation indeed. The
claim is proved.

8.2.4 Lemma The following statements are equivalent for two sections s1, s2 P Γ8pp, πEq such that
s1ppq “ s2ppq:

(1) The local sections s1 and s2 are k-equivalent at p.

(2) If px, uq : W Ñ RdˆRn is a fibered chart of πE such that p P πpW q, then for all b P t1, . . . , nu
and I P t1, . . . , dul with 1 ď l ď k:

B|I|pub ˝ s1q

BxI
ppq “

B|I|pub ˝ s2q

BxI
ppq . (A.8.2.3)

(3) There exists a fibered chart px, uq : W Ñ Rd ˆ Rn of πE with p P πpW q such that (A.8.2.2)
holds true.

(4) There exists a fibered chart px, uq : W Ñ Rd ˆ Rn of πE with p P πpW q such that (A.8.2.3)
holds true.

Proof. The claim is an immediate consequence of the formula of Faà-di-Bruno.

8.2.5 Next we want to define a topology on the jet space JkpπEq so that πk : JkpπEq ÑM becomes
a (topological) fiber bundle.
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A.9. Geometric PDEs

A.9.1. Linear differential operators over commutative rings

9.1.1 In this section, A will always denote a commutative unital algebra over a field of characteristic
zero k. The identity element of A will be denoted by 1. Let M,N be two A-modules. An element
a P A then acts in two natural ways on the space HomkpM,Nq of k-linear maps from M to N ,
namely by

a˚ : HomkpM,Nq Ñ HomkpM,Nq, f ÞÑ a˚f “ af “
`

M Q m ÞÑ afpmq P N
˘

(A.9.1.1)

and

a˚ : HomkpM,Nq Ñ HomkpM,Nq, f ÞÑ a˚f “ fa “
`

M Q m ÞÑ fpamq P N
˘

. (A.9.1.2)

9.1.2 Proposition and Definition The actions a˚ and a˚ define twoA-module structures on HomkpM,Nq
which are called the canonical left and the canonical right A-module structures, respectively. These
module structures commute.

Proof. In the following let a, b P A and f, g P HomkpM,Nq. Then one computes for m PM
`

pa` bq˚f
˘

pmq “ pa` bq
`

fpmq
˘

“ a
`

fpmq
˘

` b
`

fpmq
˘

“
`

a˚f
˘

pmq `
`

b˚f
˘

pmq “
`

a˚f ` b˚f
˘

pmq ,
`

a˚pf ` gq
˘

pmq “ a
`

fpmq ` gpmq
˘

“ afpmq ` agpmq “
`

a˚f ` a˚g
˘

pmq ,
`

a˚b˚f
˘

pmq “ a
`

bfpmq
˘

“ pabq
`

fpmq
˘

“
`

pabq˚f
˘

pmq ,
`

1˚f
˘

pmq “ 1 ¨ fpmq “ fpmq ,

and
`

pa` bq˚f
˘

pmq “ f
`

pa` bqm
˘

“ fpamq ` fpbmq

“
`

a˚f
˘

pmq `
`

b˚f
˘

pmq “
`

a˚f ` b˚f
˘

pmq ,
`

a˚pf ` gq
˘

pmq “ fpamq ` gpamq “ a˚fpmq ` a˚gpmq “
`

a˚f ` a˚g
˘

pmq ,
`

a˚b˚f
˘

pmq “
`

b˚f
˘

pamq “ f
`

pbpamq
˘˘

“ f
`

pabqm
˘

“
`

pabq˚f
˘

pmq ,
`

1˚F
˘

pmq “ F p1 ¨mq “ F pmq .

This proves the module properties. It remains to show that a˚b˚f “ b˚a˚f . But that is clear since
for all m PM

`

a˚b
˚f

˘

pmq “ a
`

pb˚fqpmq
˘

“ a
`

fpbmq
˘

“
`

a˚f
˘

pbmq “
`

b˚a˚f
˘

pmq .
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9.1.3 Remark By the preceding proposition HomkpM,Nq becomes an A-bimodule which is not
symmetric, in general, unless for example M “ N “ A. We regard HomkpM,Nq always as an object
in the category of A-bimodules. When we want to consider only the canonical left or the canonical
right A-module structure on the space of k-linear maps from M to N we write AHomkpM,Nq and
Homk,ApM,Nq, respectively, for the resulting objects in the category of A-modules.

9.1.4 Definition For every a P A denote by ada : HomkpM,Nq Ñ HomkpM,Nq the k-linear map
a˚ ´ a

˚ and call it the adjoint action of a.

9.1.5 Lemma LetM,N,P be A-modules. Then one has for all f P HomkpM,Nq, g P HomkpN,P q
and all a, b P A

adab f “ a˚padb fq ` b
˚pada fq “ a˚padb fq ` b˚pada fq , (A.9.1.3)

adapg ˝ fq “ pada gq ˝ f ` g ˝ pada fq . (A.9.1.4)

Proof. Compute by observing that the left and right A-module structures commute:

adab f “ pabq˚f ´ pabq
˚f “ a˚pb˚f ´ b

˚fq ` b˚pa˚f ´ a
˚fq “ a˚padb fq ` b

˚pada fq .

By symmetry in a and b the first claimed equality follows. For the second observe that pa˚gq ˝ f “
g ˝ pa˚fq and compute

adapg ˝ fq “ a˚pg ˝ fq ´ a
˚pg ˝ fq “ pa˚g ´ a

˚gq ˝ f ` g ˝ pa˚f ´ a
˚fq “

“ pada gq ˝ f ` g ˝ pada fq .

9.1.6 Definition For all A-modules M,N the space Diff 0pM,Nq of linear differential operators of
order 0 from M to N is defined as the set of D P HomkpM,Nq such that

adaD “ 0 for all a P A .

Recursively, one defines the space Diff kpM,Nq of linear differential operators of order ď k` 1 from
M to N as the set of all D P HomkpM,Nq such that

adaD P Diff kpM,Nq for all a P A .

The space DerkpA,Nq of derivations in N is defined as the set of all D P HomkpA,Nq for which
the Leibniz rule holds that is for which

Dpabq “ aDpbq ` bDpaq for all a, b P A .

9.1.7 Remark By definition, Diff 0pM,Nq coincides with the space HomApM,Nq of A-module maps
from M to N . By induction on k it becomes clear that Diff kpM,Nq can be equivalently described
as the set of all D P HomkpM,Nq such that

pada0 ˝ . . . ˝ adakqD “ 0 for all a0, . . . , ak P A .

9.1.8 Proposition Let M,N,P be two A-modules. Then the following holds true for all k, l P N.
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A.9. Geometric PDEs A.9.1. Linear differential operators over commutative rings

(i) The space Diff kpM,Nq inherits from HomkpM,Nq both A-module structures so is an A-
subbimodule of HomkpM,Nq. The two A-module structures coincide on Diff 0pM,Nq but
in general not on spaces of differential operators of higher order.

(ii) One has a canonical inclusion

Diff kpM,Nq Ă Diff k`1pM,Nq .

(iii) The composition of a differential operator ∆ P Diff kpN,P q with a differential operator D P

Diff lpM,Nq is a linear differential operator of degree ď k ` l.

(iv) The space of derivations DerkpA,Nq is an A-submodule of Diff 1pM,Nq with respect to the
canonical left A-module structure but in general not an A-submodule of Diff 1pM,Nq with
respect to the canonical right A-module structure.

Proof. ad (i ). The claim for Diff 0pM,Nq holds since for every D P Diff 0pM,Nq and a P A the
operators a˚D and a˚D coincide and are both A-linear again by the following equalities.

pa˚Dqpmq “ Dpamq “ Dpamq “ apDpmqq “ pa˚Dqpmq for all m PM and
pa˚Dqpbmq “ apDpbmqq “ abpDpmqq “ bpaDpmqq “ bpa˚Dpmqq for all b P A, m PM .

Under the assumption that Diff kpM,Nq inherits the A-bimodule structure from HomkpM,Nq one
checks for D P Diff k`1pM,Nq

adbpa˚Dq “ b˚a˚D ´ b
˚a˚D “ a˚pb˚D ´ b

˚Dq “ a˚padbDq P Diff kpM,Nq and

adbpa
˚Dq “ b˚a

˚D ´ b˚a˚D “ a˚pb˚D ´ b
˚Dq “ a˚padbDq P Diff kpM,Nq .

By induction Diff kpM,Nq therefore is an A-subbimodule of HomkpM,Nq for all k P N. Even though
the two A-module structures coincide on Diff 0pM,Nq they do not on spaces of differential operators
of order 1 (and higher) as Example 9.1.9 below shows.

ad (ii ). This is obvious by definition and an inductive argument.

ad (iii ). If k` l “ 0 the claim is clear since then both ∆ and D are A-linear, hence their composition
is so, too. Assume that for some natural n the claim holds for all k, l P N with k`l ď n. Then assume
k`l “ n`1 and let ∆ P Diff kpN,P q and D P Diff lpM,Nq. Now compute using Equation (A.9.1.4)

adap∆ ˝Dq “ pada ∆q ˝D `∆ ˝ padaDq .

By inductive hypothesis the right hand side is a differential operator of order ď n, hence ∆ ˝ D P

Diff k`lpM,P q.

ad (iv ). The space of derivations DerkpA,Nq is an A-submodule of Diff 1pM,Nq with respect to
the canonical left A-module structure. Namely, if D P DerkpA,Nq and a, b, c P A, then

pa˚Dqpbcq “ aDpbcq “ abDpcq ` acDpbq “ bpaDpcqq ` cpaDpbqq “ bpa˚Dqpcq ` cpa˚Dqpbq .

In general, DerkpA,Nq is not an A-submodule of Diff 1pM,Nq with respect to the canonical right
A-module structure.
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9.1.9 Example Let A “ krX1, . . . , Xns be the polynomial ring over k in n indeterminates and Ω1
A{k

the space of Kähler differentials of A that is the space I{I2, where I is the kernel of the multiplication
map µ : A bk A Ñ A. The canonical map d : A Ñ Ω1

A{k, a ÞÑ da “ 1 b a ´ a b 1 ` I2 then is a
derivation and Ω1

A{k an A-module which is free over the elements dX1, . . . , dXn. If now a P A z k,
then

a˚dp1q “ da ‰ 0 ,

so a˚d can not be a derivation. Note that a˚d is a derivation by Proposition 9.1.8 (iv).

9.1.10 By Proposition 9.1.8 one has a (filtered) diagram in the category of A-bimodules

Diff 0pM,Nq ãÝÑ Diff 1pM,Nq ãÝÑ . . . ãÝÑ Diff kpM,Nq ãÝÑ . (A.9.1.5)

Its colimit exists and coincides with the union of the Diff kpM,Nq, k P N. We will denote it by
Diff pM,Nq and call it the A-bimodules of linear differential operators from M to N .

9.1.11 Remark In case we want to consider the spaces Diff kpM,Nq and Diff pM,Nq with their
canonical left A-module structure, only, we write ADiff kpM,Nq and ADiff pM,Nq, respectively.
Analogously, when we regard Diff kpM,Nq and Diff pM,Nq as objects in the category of A-modules
with their canonical right A-module structure we denote them by Diff k

ApM,Nq and DiffApM,Nq,
respectively. By Diff pMq

9.1.12 Proposition Assigning to every pair of A-modules pM,Nq the A-bimodule Diff kpM,Nq
and to every pair of A-module maps f : M 1 Ñ M and g : N Ñ N 1 the A-bimodule map pf˚, g˚q :
Diff kpM,Nq Ñ Diff kpM 1, N 1q, D ÞÑ g ˝D ˝ f comprises a bifunctor which is contravariant in the
first and covariant in the second argument. Analogously, the assignment pM,Nq Ñ Diff pM,Nq
becomes a bifunctor.

Proof. By definition,
`

pidM q
˚, pidN q˚

˘

D “ D for every D P Diff kpM,Nq, so
`

pidM q
˚, pidN q˚

˘

“ idDiff kpM,Nq .

Let M1,M2,M3, N1, N2, N3 denote A-modules and assume to be given A-modules maps f1 : M2 Ñ

M1, f2 : M3 ÑM2, g1 : N1 Ñ N2, and g2 : N2 Ñ N3. Then
´

`

f˚2 , g2˚

˘

˝
`

f˚1 , g1˚

˘

¯

D “
`

f˚2 , g2˚

˘`

g1 ˝D ˝ f1

˘

“ pg2 ˝ g1q ˝D ˝ pf1 ˝ f2q “

“
`

pf1 ˝ f2q
˚, pg2 ˝ g1q˚

˘

D .

This proves that Diff kp´,´q and Diff p´,´q are bifunctors contravariant in the first and covariant
in the second argument.

9.1.13 Theorem Let N be an A-module. Then the functors Diff kp´, Nq : AMod Ñ AModA and
Diff p´, Nq : AMod Ñ AModA are representable. Representing objects are given by the A-modules
ADiff kpNq and ADiff pNq, respectively.

D
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Theorem.Let U Ă Rn open and DpUq Ă C8pUq the space of test functions over U that is
the space of all real valued smooth functions with support compact in U . Denote by KpUq
the set of all compact subset K Ă U and for all K P KpUq by DKpUq the space of real valued
smooth functions with support in K. Endow DKpUq with its natural structure of a Fréchet
space. Finally, let pKkqkPN be a compact exhaustion of U which means that each Kk has
non-empty open interior,

Ť

kPNKk “ U and Kk Ť K̊k`1 for all k P N. Then the following
locally convex structures on DpUq coincide:

(i) the standard LF-space structure given by the locally convex colimit topology of the count-
able strict inductive system

`

DKkpUq
˘

kPN,

(ii) the locally convex colimit topology of the inductive system
`

DKpUq
˘

KPKpUq
,

(iii) the locally convex structure induced by the collection of all seminorms q : DpUq Ñ Rě0

such that q ιK : DKpUq Ñ R is a continuous seminorm, where ιK : DKpUq Ñ DpUq
is the canoncial embedding,

(iv) the locally convex structure induced by the collection of all seminorms pN,θ : DpUq Ñ Rě0

of the form

pN,θpfq “ sup
αPNn, |α|ďN

›

›

›
θα
B|α|f

Bαx

›

›

›

U
for f P DpUq ,

where N runs through the elements of N, θ through all locally finite families pθαqαPNn of
continuous functions θα : U Ñ Rě0, and where }´ }U denotes the supremum norm over
U .

167



Licenses

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International

===================================================

Creative Commons Corporation (“Creative Commons”) is not a law firm and does not provide legal
services or legal advice. Distribution of Creative Commons public licenses does not create a lawyer-
client or other relationship. Creative Commons makes its licenses and related information available on
an “as-is” basis. Creative Commons gives no warranties regarding its licenses, any material licensed
under their terms and conditions, or any related information. Creative Commons disclaims all liability
for damages resulting from their use to the fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and conditions that creators and
other rights holders may use to share original works of authorship and other material subject to
copyright and certain other rights specified in the public license below. The following considerations
are for informational purposes only, are not exhaustive, and do not form part of our licenses.

Considerations for licensors: Our public licenses are
intended for use by those authorized to give the public
permission to use material in ways otherwise restricted by
copyright and certain other rights. Our licenses are
irrevocable. Licensors should read and understand the terms
and conditions of the license they choose before applying it.
Licensors should also secure all rights necessary before
applying our licenses so that the public can reuse the
material as expected. Licensors should clearly mark any
material not subject to the license. This includes other CC-
licensed material, or material used under an exception or
limitation to copyright. More considerations for licensors:

wiki.creativecommons.org/Considerations_for_licensors

Considerations for the public: By using one of our public
licenses, a licensor grants the public permission to use the
licensed material under specified terms and conditions. If
the licensor’s permission is not necessary for any reason--for
example, because of any applicable exception or limitation to
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copyright--then that use is not regulated by the license. Our
licenses grant only permissions under copyright and certain
other rights that a licensor has authority to grant. Use of
the licensed material may still be restricted for other
reasons, including because others have copyright or other
rights in the material. A licensor may make special requests,
such as asking that all changes be marked or described.
Although not required by our licenses, you are encouraged to
respect those requests where reasonable. More_considerations
for the public:

wiki.creativecommons.org/Considerations_for_licensees

===================================================

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Public License (“Public License”). To the extent this Public License may be interpreted as a contract,
You are granted the Licensed Rights in consideration of Your acceptance of these terms and conditions,
and the Licensor grants You such rights in consideration of benefits the Licensor receives from making
the Licensed Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived from
or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copy-
right and Similar Rights held by the Licensor. For purposes of this Public License, where the
Licensed Material is a musical work, performance, or sound recording, Adapted Material is
always produced where the Licensed Material is synched in timed relation with a moving image.

b. Copyright and Similar Rights means copyright and/or similar rights closely related to copy-
right including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of
this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar
Rights.

c. Effective Technological Measures means those measures that, in the absence of proper author-
ity, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

d. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation
to Copyright and Similar Rights that applies to Your use of the Licensed Material.

e. Licensed Material means the artistic or literary work, database, or other material to which the
Licensor applied this Public License.
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f. Licensed Rights means the rights granted to You subject to the terms and conditions of this
Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

g. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

h. NonCommercial means not primarily intended for or directed towards commercial advantage
or monetary compensation. For purposes of this Public License, the exchange of the Licensed
Material for other material subject to Copyright and Similar Rights by digital file-sharing or
similar means is NonCommercial provided there is no payment of monetary compensation in
connection with the exchange.

i. Share means to provide material to the public by any means or process that requires permission
under the Licensed Rights, such as reproduction, public display, public performance, distribution,
dissemination, communication, or importation, and to make material available to the public
including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC
of the European Parliament and of the Council of 11 March 1996 on the legal protection of
databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You
a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise
the Licensed Rights in the Licensed Material to:

a. reproduce and Share the Licensed Material, in whole or
in part, for NonCommercial purposes only; and

b. produce and reproduce, but not Share, Adapted Material
for NonCommercial purposes only.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply
with its terms and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to
exercise the Licensed Rights in all media and formats whether now known or hereafter
created, and to make technical modifications necessary to do so. The Licensor waives
and/or agrees not to assert any right or authority to forbid You from making technical
modifications necessary to exercise the Licensed Rights, including technical modifications
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necessary to circumvent Effective Technological Measures. For purposes of this Public
License, simply making modifications authorized by this Section 2(a)

(4) never produces Adapted Material.

5. Downstream recipients.

a. Offer from the Licensor -- Licensed Material. Every
recipient of the Licensed Material automatically
receives an offer from the Licensor to exercise the
Licensed Rights under the terms and conditions of this
Public License.

b. No downstream restrictions. You may not offer or impose
any additional or different terms or conditions on, or
apply any Effective Technological Measures to, the
Licensed Material if doing so restricts exercise of the
Licensed Rights by any recipient of the Licensed
Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as
permission to assert or imply that You are, or that Your use of the Licensed Material is,
connected with, or sponsored, endorsed, or granted official status by, the Licensor or others
designated to receive attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License,
nor are publicity, privacy, and/or other similar personality rights; however, to the extent
possible, the Licensor waives and/or agrees not to assert any such rights held by the
Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but
not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any
voluntary or waivable statutory or compulsory licensing scheme. In all other cases the
Licensor expressly reserves any right to collect such royalties, including when the Licensed
Material is used other than for NonCommercial purposes.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material, You must:
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a. retain the following if it is supplied by the Licensor
with the Licensed Material:

i. identification of the creator(s) of the Licensed
Material and any others designated to receive
attribution, in any reasonable manner requested by
the Licensor (including by pseudonym if
designated);

ii. a copyright notice;

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of
warranties;

v. a URI or hyperlink to the Licensed Material to the
extent reasonably practicable;

b. indicate if You modified the Licensed Material and
retain an indication of any previous modifications; and

c. indicate the Licensed Material is licensed under this
Public License, and include the text of, or the URI or
hyperlink to, this Public License.

For the avoidance of doubt, You do not have permission under this Public License to Share
Adapted Material.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it
may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource
that includes the required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed
Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database for NonCommercial
purposes only and provided You do not Share Adapted Material;

b. if You include all or a substantial portion of the database contents in a database in which You
have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

172



Licenses CC BY-NC-ND 4.0

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under
this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE EX-
TENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS AND AS-
AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
CONCERNING THE LICENSEDMATERIAL, WHETHER EXPRESS, IMPLIED, STATUTORY,
OR OTHER. THIS INCLUDES, WITHOUT LIMITATION, WARRANTIES OF TITLE, MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, AB-
SENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OR AB-
SENCE OF ERRORS, WHETHER OR NOT KNOWN OR DISCOVERABLE. WHERE DIS-
CLAIMERS OF WARRANTIES ARE NOT ALLOWED IN FULL OR IN PART, THIS DIS-
CLAIMER MAY NOT APPLY TO YOU.

b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE TO YOU
ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION, NEGLIGENCE) OR OTH-
ERWISE FOR ANY DIRECT, SPECIAL, INDIRECT, INCIDENTAL, CONSEQUENTIAL, PUNI-
TIVE, EXEMPLARY, OR OTHER LOSSES, COSTS, EXPENSES, OR DAMAGES ARISING
OUT OF THIS PUBLIC LICENSE OR USE OF THE LICENSED MATERIAL, EVEN IF THE
LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EX-
PENSES, OR DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN
FULL OR IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and
waiver of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public
License terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of
Your discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have
to seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so
will not terminate this Public License.
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d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions communicated
by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce,
limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be
made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the
provision cannot be reformed, it shall be severed from this Public License without affecting the
enforceability of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver
of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

===================================================

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect
to apply one of its public licenses to material it publishes and in those instances will be considered the
“Licensor.” The text of the Creative Commons public licenses is dedicated to the public domain under
the CC0 Public Domain Dedication. Except for the limited purpose of indicating that material is
shared under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the use of
the trademark “Creative Commons” or any other trademark or logo of Creative Commons without its
prior written consent including, without limitation, in connection with any unauthorized modifications
to any of its public licenses or any other arrangements, understandings, or agreements concerning
use of licensed material. For the avoidance of doubt, this paragraph does not form part of the public
licenses.

Creative Commons may be contacted at creativecommons.org.
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GNU Free Documentation License Version 1.3

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. http://fsf.org/
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must them-
selves be free in the same sense. It complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any
textual work, regardless of subject matter or whether it is published as a printed book. We recommend
this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants
a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The “Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may
not explain any mathematics.) The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License. If
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a section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called
“Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image
formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by
some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “En-
dorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document
means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other conditions whatsoever to those
of this License. You may not use technical measures to obstruct or control the reading or further
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copying of the copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the conditions in
section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the
front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly
identify you as the publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access
to download using public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redis-
tributing any large number of copies, to give them a chance to provide you with an updated version
of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission. B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than five), unless
they release you from this requirement. C. State on the Title page the name of the publisher of
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the Modified Version, as the publisher. D. Preserve all the copyright notices of the Document. E.
Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission
to use the Modified Version under the terms of this License, in the form shown in the Addendum
below. G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice. H. Include an unaltered copy of this License. I. Preserve
the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled “History” in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence. J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives permission. K. For any section Entitled
“Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section
all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein. L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles. M. Delete any
section Entitled “Endorsements”. Such a section may not be included in the Modified Version. N. Do
not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant
Section. O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties–for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by)
any one entity. If the Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you may not add another;
but you may replace the old one, on explicit permission from the previous publisher that added the
old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
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Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it,
in parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original docu-
ments, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledge-
ments”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorse-
ments”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules of this License for verbatim copying
of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond
what the individual works permit. When the Document is included in an aggregate, this License
does not apply to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this
License, and all the license notices in the Document, and any Warranty Disclaimers, provided that
you also include the original English version of this License and the original versions of those notices
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and disclaimers. In case of a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the require-
ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will
automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and not
permanently reinstated, receipt of a copy of some or all of the same material does not give you any
rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License “or any later version” applies to it, you have the option
of following the terms and conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation. If the Document does not specify
a version number of this License, you may choose any version ever published (not as a draft) by the
Free Software Foundation. If the Document specifies that a proxy can decide which future versions
of this License can be used, that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that
publishes copyrightable works and also provides prominent facilities for anybody to edit those works.
A public wiki that anybody can edit is an example of such a server. A “Massive Multiauthor Collabo-
ration” (or “MMC”) contained in the site means any set of copyrightable works thus published on the
MMC site.
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“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative
Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were
first published under this License somewhere other than this MMC, and subsequently incorporated
in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus
incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with. . . Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these ex-
amples in parallel under your choice of free software license, such as the GNU General Public License,
to permit their use in free software.
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